

A Genetic Task Migration Algorithm for Fault Recovery in NoC-based
Manycore Systems

JINXIANG WANG*, ZIXU WU, FANGFA FU*

Microelectronics Center
Harbin Institute of Technology

No. 92, Xidazhi Street, Nangang District, Harbin 150001
CHINA

jxwang@hit.edu.cn, fff1984292@hit.edu.cn

Abstract: - Recovery from permanent core faults in NoC-based manycore systems usually requires migrating
tasks from faulty cores to fault-free cores, where balanced workloads are commonly desired. Finding optimal
migration destinations for tasks, however, is a challenging issue due to the time complexity of the search
process. To cope with this, in this paper, a genetic algorithm based task migration algorithm is proposed, where
the adaptive crossover (AC) scheme and the An chaotic mapping disturbance (AD) scheme are incorporated to
improve the search efficiency. Experiments show that the modifications to the standard genetic algorithm (SGA)
are effective, and the proposed task migration algorithm outperforms two PSO-based algorithms, the SGA and
a deterministic algorithm (DA) in finding more balanced migration solutions. The average improvements of the
proposed algorithm over the DA, PSO, DPSO, and SGA algorithms are 86%, 88%, 37%, and 16%, respectively.

Key-Words: - Task migration, genetic algorithm, fault recovery, NoC, manycore system

1 Introduction
The CMOS technology today has enabled hundreds
of processor cores to be fabricated on a single chip
[1,2] and promises the integration of thousands of
cores in the near future [3]. With such large number
of processor cores on chip, the traditional bus-based
architecture is no longer feasible due to its lack of
scalability. Typically, these chips employ the
network-on-chip (NoC) communication architecture
and are known as the NoC-based manycore systems.
Although such systems can provide significant
performance enhancement, growing power density
accelerates the current-related and thermo-related
failures [4]. Thus, besides the cause of
manufacturing defects, permanent faults may also
occur in processor cores at runtime due to the
accelerated aging, which poses a great challenge for
fault tolerance in manycore systems [5,6,7].

To ensure correct system functionality, faulty
processor cores are usually eliminated from the
system logically by migrating tasks to other fault-
free cores and not assigning new tasks to the faulty
cores any more. Although final migration decisions
differ according to different specific application
requirements, it is generally preferred that the
workload on each core should be balanced before
and after migration, since an unbalanced workload
would cause thermal hotspots and thermal stress,
making the cores age differently and resulting in

shorter lifetime for the whole system [8]. Moreover,
since a balanced workload is beneficial to the
parallel execution of application programs, it helps
to alleviate the throughput degradation due to the
decrease in available processor cores. Therefore,
this work focuses on finding a balanced migration
solution for core failures in manycore systems. The
tasks targeted in this paper are compute-intensive
tasks, which have negligible communications and
can be considered as independent tasks.

To find a balanced workload distribution, it
seems attractive to remap all the tasks in the system
[9] since this would produce the most balanced
solution for the faulty system. The communication
cost of remapping all tasks, however, could be
extremely large, especially for manycore systems
with multiple applications, and the tasks on fault-
free cores might have to be halted for remapping,
which causes unnecessary performance degradation.
Meanwhile, the effort required to search for the best
solution could grow sharply with the increasing
number of processors cores [9]. Hence, this strategy
is effective only when the number of tasks and
processor cores is small.

Besides remapping all tasks, an alternative
approach is to remap the tasks being affected by
faulty cores. Although finding the most balanced
workload distribution cannot be guaranteed at this
time, the solution space and the searching effort are

WSEAS TRANSACTIONS on COMPUTERS Jinxiang Wang, Zixu Wu, Fangfa Fu

E-ISSN: 2224-2872 487 Volume 14, 2015

reduced dramatically. Therefore, this approach is
actually more feasible than the former one to
address the task migration problem for fault
tolerance in manycore systems.

Selecting destination cores for tasks to be
migrated is basically a task assignment problem,
which is NP-complete [10]. Hence, it is infeasible to
search for the optimal exhaustively due to its time
complexity. To obtain a migration solution with
balanced workloads, in this paper, we present a task
migration algorithm by adopting and improving the
Genetic Algorithm (GA). By modifying the constant
crossover probability to a parameter adjusting itself
adaptively over iterations and by adding a chaotic
disturbance to the best individual, our Adaptive
Crossover An chaotic mapping Disturbed Genetic
Migration algorithm, namely ACAD-GM, is able to
generate a near-optimal migration solution
efficiently. The rest of the paper is organized as
follows. Section 2 presents a brief review of some
relevant work. Section 3 demonstrates the targeted
architecture and formulates the task migration
problem based on the manycore architecture. In
Section 4, the genetic task migration algorithm is
described in detail. Then, in Section 5, the
experiment results are discussed. Finally, Section 6
concludes the paper.

2 Related Work
As mentioned in the previous section, choosing
optimal destinations for tasks is NP-complete. For
the problem in this work, to assign n tasks to m
processor cores, there would be mn possible
solutions. To obtain a near-optimal solution or even
the optimal solution in reasonable time, efficient
algorithms have been introduced in the literature.

Genetic Algorithm (GA), which is a well-known
population-based stochastic search algorithm, has
been adopted to solve the problem of task
scheduling and mapping both in traditional parallel
computing systems and in multicore and manycore
systems [11,12,13]. It iteratively searches the
solution space with a set of individuals and updates
the population by selection, crossover and mutation
operations. Because it searches multiple points
simultaneously and has the capability of exploring
new space, GA has a low probability to be trapped
at local optima, which is essential to be used in the
many-peaked search space. To guide the searching
process efficiently, parameter adaptation schemes
have been proposed. In [14], the difference between
the average and the maximum fitnesses is used as a
representation of detecting the convergence of GA.
The probabilities of crossover and mutation for each

individual are calculated separately according to the
difference and the fitness value of the solution.
Similarly, in [15], the probabilities of crossover and
mutation are also designed to be changed to
maintain population diversity. However, the
measurement of the genetic diversity used is the
ratio between the mean and the maximum values of
the fitness function at each generation. Other
parameters such as the mutation rate, mutation range
and number of crossovers are also important to the
performance of GA. A simultaneous adaptation
scheme of tuning these parameters dynamically is
presented in [16]. For all these GA variations, the
main effort is to achieve better tradeoff between
accelerating algorithm convergence and maintaining
exploitation capability to new space. Although the
search process can be controlled more precisely
with more parameters, the cost of extra computation
is increased, which should be maintained as low as
possible.

Besides GA, the Particle Swarm Optimization
(PSO) is another population-based algorithm [17]. It
has been successfully employed to solve the
complex optimization problems. It should be noted
that the standard PSO operates in continuous space.
Although it has been shown that solving the task
assignment problem with PSO is feasible [10], the
characteristic of discrete space differs a lot from that
of the continuous space. To extend the capability of
PSO in solving discrete optimization problems, a
binary version of PSO is proposed in [18]. Although
the binary PSO is effective and has been widely
adopted, multi-valued numbers have to be converted
to binary representations before using the approach,
which requires extra processing power. To reduce
the conversion cost, a discrete PSO (DPSO) is
presented in [19] for the job scheduling problem. It
introduces a direct encoding scheme to represent the
positions of particles and derives a method for
updating positions of particles without using the
sigmoid transformation as in the binary PSO. The
search process of PSOs is generally simpler than
that of GAs, but PSOs also faces the problem of
leveraging the exploration and the exploitation
capacities. In addition, since parameters have great
influence on the performance of PSOs, parameters
must be selected carefully for efficient optimization.

3 Problem Formulation
This work focuses on providing a task migration
solution when cores fail in a NoC-based manycore
system. The targeted system architecture hardware
consists of M×N homogeneous processor cores
connected by an M×N 2D mesh NoC via on-chip

WSEAS TRANSACTIONS on COMPUTERS Jinxiang Wang, Zixu Wu, Fangfa Fu

E-ISSN: 2224-2872 488 Volume 14, 2015

routers, as shown in Fig.1. Tasks are executed on
each processor core.

Fig.1 NoC-based manycore system architecture

Without loss of generality, the workload on each

core before failures is assumed to be different to
capture the execution process of tasks entering and
leaving the system dynamically. Let w(x) denotes
the workload of x, where x is either a processor core
or a task. Then the total workload on core ci after
task tj being migrated to it can be expressed as:

() () ()i i jw c w c w t′ = + , (1)
where w’(ci) and w(ci) represent the workload on ci
after and before migration, respectively. Let T={t1,
t2, … , tm} denotes the task set on faulty cores,
where m is the total number of tasks on all faulty
cores. And let C={c1, c2, … , cn} denotes the set of
fault-free cores, where n is the total number of all
faulty-free cores. Then the task migration problem is
to find a mapping f:T→C, so that each element in T
is mapped to an element in C. If let ΔWi be the extra
workload introduced by the migrated tasks on ci,
then

1

()
m

i j j
j

W d w t
=

Δ = ⋅∑ , (2)

1, ()
, [1,]

0, ()
j i

j
j i

f t c
d j m

f t c

=⎧⎪= ∈⎨ ≠⎪⎩
. (3)

Thus, Equation (1) can be extended to
() ()i i iw c w c W′ = + Δ . (4)

To obtain a balanced workload distribution on all
fault-free cores after the migration, Equation (5) is
calculated.

2

1
()

n

i
i

E w c w
=

⎡ ⎤′= −⎣ ⎦∑ , (5)

where,

1
()

M N

j
j

w c
w

n

×

==
∑

. (6)

The reason why Equation (5) is used instead of the
standard deviation of workloads is that it requires
less computation.

Therefore, the task migration problem in this
work can be finally expressed as
Find: a solution S∈Cm for f:T→C,
Such that: E is minimized.

4 Genetic Migration Algorithm
In this section, a genetic migration algorithm based
on the improved Genetic Algorithm is presented to
solve the task migration problem.

4.1 Encoding scheme and fitness function
To solve a problem with GA, the solution of the
problem must be encoded as a chromosome. For the
migration problem, the chromosome is constructed
as follows.

Fig.2 Chromosome representation

As illustrated in Fig.2, a chromosome with m

tasks to be migrated has m elements, which has the
same length as a solution S to f. Similar to the
meaning of each element in S, the value of each
element in a chromosome represents the destination
core number the task is mapped. Thus, for the
chromosome exemplified in Fig.2, it can be
obtained that tasks t1 and t3 are mapped to core c2,
while tasks t2 and tm are mapped to core c5 and c10,
respectively.

The main objective of the task migration
presented in this paper is to minimize the workload
differences among all fault-free cores after failures.
Since the chromosome providing smaller function
value calculated with Equation (5) produces more
balanced workload distribution, Equation (5) is used
as the fitness function to evaluate the fitness value
for each individual (i.e. each chromosome).

4.2 ACAD-GM algorithm
With the above migration solution representation
and the fitness function, a near-optimal solution can
be obtained by a standard GA. To improve the
searching efficiency, the ACAD-GM algorithm is
proposed, where the adaptive crossover (AC)
scheme and the An chaotic mapping disturbance
(AD) scheme are introduced. The pseudo code of
the ACAD-GM algorithm is illustrated in Fig.3.

WSEAS TRANSACTIONS on COMPUTERS Jinxiang Wang, Zixu Wu, Fangfa Fu

E-ISSN: 2224-2872 489 Volume 14, 2015

Algorithm: ACAD-GM
Input: task workload set w(T);

core workload set w(C)
Output: migration solution

1: initialize population (Npop individuals)
2: evaluate population using equation (5)
3: g = 0
4: while g < Gmax do
5: g = g+1
6: select Nsel individuals from the whole

population using the SUS method
7: apply crossover operations to the selected

Nsel individuals using the AC scheme
8: apply mutation operations to the individuals

after crossover
9: evaluate new population using equation (5)

10: apply chaos disturbance to the individual
with the highest fitness (AD scheme)

11: return migration solution

Fig.3 Pseudo code of ACAD-GM algorithm

To achieve a balanced workload distribution, the
workload of each task in task set T and the total
workload on each faulty-free core in set C before
migration are provided as the input to the ACAD-
GM algorithm. In the first step, Npop individuals are
generated randomly to form an initial population.
Then, Equation (5) is used to evaluate the fitness
value for each individual. For the termination
criteria of GA, a maximum number of generations
Gmax is defined. Thus, the algorithm would not stop
even if no better solution could be found for many
consecutive generations. This helps to present the
best capability that the algorithm can provide within
Gmax iterations. To enable the evolution process,
some of the individuals need to be selected for
mating. The selection method used in this paper is
the Stochastic Universal Sampling (SUS), as it has
lower computation complexity than the Roulette
Wheel Selection [20] and it could provide better
results [21]. The number of individuals to be
selected (i.e., the Nsel in Fig.3) can be controlled by
defining a selection rate, also known as the
generation gap [22]. After the selection, the AC
scheme (described in detail in Section 4.2.1) and the
mutation operations are applied to the Nsel
individuals. The newly generated Nsel individuals,
together with the ones that have not been selected in
the previous selection step, form a new population.
This new population is then evaluated with the
fitness function. To improve the search ability of the
standard GA in the solution space, a chaotic
disturbance (i.e., the AD scheme, described in detail

in Section 4.2.2) has been added to the best solution
found in the current generation. After Gmax
generations, the ACAD-GM algorithm produces the
final migration solution.

The AC and the AD schemes are presented in the
following two sections.

4.2.1 AC scheme
Crossover is an important operator and has a great
influence on the performance of GAs. Since
crossover creates new individuals with information
from the parent individuals, high crossover rate
generally yields fast population convergence, while
low crossover rate maintains population diversity. In
addition, the number of crossover points also affects
the search process.

To improve the search ability of the standard GA,
we first combine a decreased crossover rate with the
adaptive crossover probability approach adopted
from [14]. The combined crossover rate pcomb is
calculated by Equation (7).

max
comb adap max

max max

, 1,2,...,G g gp p g G
G G

−
= + ⋅ = (7)

where, g denotes the current number of generations,
and padap is the adopted crossover probability. The
construction of Equation (7) is to accelerate the
convergence of the adopted approach at early
generations. Then, the influence of padap becomes
dominant gradually when the population evolves.
The padap is given by the following equation:

max p
avg

max avgadap

avg

,

1 ,

p

p

f f
f f

f fp
f f

−⎧
≥⎪ −= ⎨

⎪ <⎩

, (8)

where, fmax and favg are the maximum and average
ranked fitness values of all parents (i.e., the Nsel
individuals), respectively. And fp is the larger of the
ranked fitness values of two parents to be crossed.
The ranked fitness value of an individual here is
calculated by sorting individuals of the population
according to their original fitness values obtained
with Equation (5) and reassigning a new fitness
value for each one, so that the individual which
provides better solution could have higher ranked
fitness value and these ranked fitness values are
limited to a fixed range throughout all iterations.

With the combined scheme, the convergence of
the population is accelerated. This, however, also
increases the probability of premature convergence
to local optima. To overcome this problem, the
number of crossover points is designed to vary with
the evolution process as well. At early generations,
multi-point crossover is employed to encourage the
exploration of new solution space, which mitigates

WSEAS TRANSACTIONS on COMPUTERS Jinxiang Wang, Zixu Wu, Fangfa Fu

E-ISSN: 2224-2872 490 Volume 14, 2015

the problem of premature convergence. Then, the
number of crossover points decreases gradually to
one as the population evolves, which helps to
maintain better local exploitation, as single-point
crossover is less disruptive. Since too many
crossover points induce excessive computation, in
this paper, 3-point crossover is chosen as the initial
condition. The number selection of crossover points
is described by Equation (9):

2
max3

1 2
point max max3 3

1
max3

3,

2,

1,

g G

N G g G

g G

⎧ > ⋅⎢ ⎥⎣ ⎦⎪⎪= ⋅ < ≤ ⋅⎢ ⎥ ⎢ ⎥⎨ ⎣ ⎦ ⎣ ⎦
⎪

≤ ⋅⎢ ⎥⎪ ⎣ ⎦⎩

, (9)

where, Npoint is the number of crossover points, and
g is the current number of generations as defined in
Equation (7).

4.2.2 AD scheme
Recent studies have shown that chaos optimization
algorithms have high efficiency in searching for the
global optima [23,24]. To further improve the
search ability of GA, a chaotic disturbance is added
to the best individual of the current generation. The
disturbance is basically a change of some values of
the elements in the chromosome. Since the main
operations in GA have provided an effective search
method, this disturbance is designed to be as little as
possible to avoid disrupting the main search process.

The An chaotic map is adopted in this paper, as it
exhibits a random ergodic behavior with decreasing
probabilities of producing values from 0 to 1, which
defers from other chaotic maps such as the Cat map,
the Logistic map and the Tent map [23]. This
characteristic is helpful for improving the capability
of a local exploitation since it introduces slight
disturbance for most cases while providing a chance
to explore further points in the solution space at the
same time. The An mapping function is shown in
Equation (10).

3 1
2 4

1 1 1
2 4

, [0,0.5)
, [0.5,1]

n
n

n

x x
x

x x+

+ ∈⎧⎪= ⎨
− ∈⎪⎩

, (10)

where xn is the value of variable x in the n-th
iteration. This equation can be used to map a
uniformly distributed random variable to a non-
uniformly distributed one if sufficient iterations
have been performed to ensure that the sequence
enters the chaotic state. And a random number r
between 0 and 1 can, thus, be obtained with the An
map.

To avoid disrupting the main search process of
the standard GA, in our scheme, the r/10 is used to
determine the percentage of elements in the best

chromosome to be disturbed. Since the position of a
better chromosome is not known a priori, which
elements would be disturbed are chosen randomly in
our scheme. For the same reason, the value of an
element in the chromosome is also chosen randomly
in the core set C.

After applying the disturbance, the fitness value
of the new chromosome is calculated. To prevent
corrupting the best solution found by the population,
the best chromosome is replaced by the new one
only if the new chromosome could produce smaller
value of Equation (5) than that of the best one.

5 Experimental Results
In this section, the effectiveness of the proposed
modifications to the standard GA (SGA) [11] is
evaluated in Experiment I. Then we evaluate the
proposed algorithm by comparing the workload
balancing capability, the maxspan after migration
and the execution time of algorithm with a simple
deterministic algorithm (DA), the PSO [10], the
DPSO [19] and the SGA in Experiment II. Maxspan,
as defined in [12], is the largest task completion
time among all the processors in the system. Thus,
in our experiment, the maxspan can be determined
by finding the largest workload among all fault-free
cores after migration, which can be calculated
according to Equation (4). The test cases used
throughout the two experiments are described in
Section 5.1.

5.1 General experiment setup
To evaluate the performance of the algorithms, three
selection probabilities are utilized to construct
different workload scenarios based on the telecomm
benchmarks from the Embedded System Synthesis
Benchmarks Suite (E3S) [25], so that the tasks in
the system can follow a desired distribution. These
scenarios are considered as the initial condition of
the system before cores fail. The processor core, in
this experiment, is assumed to be the IBM PowerPC
750CX-500MHz. Hence, the required execution
time of each benchmark task can be calculated
accordingly.

The selection probabilities used are the uniform
distribution, normal distribution and inverse normal
distribution. Specifically, the uniform distribution
evenly selects a desired number of tasks from the 16
benchmark tasks according to the required execution
time. The normal distribution generates a set of
tasks with more of the medium tasks and less of the
heavy and light tasks. While the inverse normal

WSEAS TRANSACTIONS on COMPUTERS Jinxiang Wang, Zixu Wu, Fangfa Fu

E-ISSN: 2224-2872 491 Volume 14, 2015

distribution selects less of the medium tasks and
more of the other tasks.

For the first experiment, an 8×8 2D mesh NoC-
based manycore system is targeted. With the above
selection probabilities, 18 cases are generated where
20 and 40 tasks are selected respectively for each
core. For each scenario, 10%, 40% and 80% of
cores in the manycore system are chosen randomly
to be faulty to simulate different faulty conditions of
the system. For clarity, these faulty cases are
categorized into six workload distribution cases, as
shown in Table 1.

Table 1 Workload distribution cases
Number
of tasks

Uniform
distribution

Normal
distribution

Inverse
normal

distribution
20 Workload I Workload II Workload III
40 Workload IV Workload V Workload VI

All the algorithms are implemented using
MATLAB 7.11 and tested on a computer with
Pentium Dual-Core CPU E5200 operating at
2.5GHz, 3GB memory and Windows XP operating
system.

5.2 Experiment I
To evaluate the optimization performance of the
proposed modifications to the SGA, in this
experiment, 2000 iterations (Gmax =2000) for both
SGA and ACAD-GM are performed, and the two
algorithms run till Gmax iterations before exit. A
population size of 20 for both algorithms is used.
Other parameters for SGA are selected as follows:
generation gap is 0.95, crossover rate is 0.9, and
mutation rate is 0.01. Final results for each case are
averaged over 50 independent trials and shown in
Table 2.

Table 2 Comparison between SGA and ACAD-GM on 18 test cases

Workload
cases

Faulty
percentage

Fitness value Standard deviation Execution time

SGA ACAD-
GM Improv. SGA ACAD-

GM Improv. SGA ACAD-
GM Degrad.

I
10% 5.57E+06 5.57E+06 0.04% 4.48E+04 3.90E+04 13.1% 3.79E+00 6.38E+00 68.4%
40% 2.06E+05 1.10E+05 46.4% 4.93E+04 2.80E+04 43.2% 8.04E+00 1.26E+01 56.5%
80% 1.26E+05 5.44E+04 56.7% 3.25E+04 1.95E+04 40.0% 1.21E+01 1.92E+01 59.1%

II
10% 4.82E+05 4.80E+05 0.6% 2.05E+04 2.24E+04 -8.9% 3.67E+00 6.27E+00 70.9%
40% 1.15E+05 7.48E+04 35.1% 2.20E+04 1.59E+04 27.8% 7.96E+00 1.26E+01 58.1%
80% 6.70E+04 3.32E+04 50.4% 1.74E+04 1.15E+04 33.7% 1.23E+01 1.92E+01 56.5%

III
10% 3.98E+06 3.97E+06 0.24% 5.24E+04 5.36E+04 -2.3% 3.82E+00 6.36E+00 66.2%
40% 2.64E+05 1.18E+05 55.4% 5.56E+04 3.63E+04 34.7% 8.06E+00 1.28E+01 59.2%
80% 1.48E+05 6.10E+04 58.8% 4.63E+04 2.21E+04 52.3% 1.23E+01 2.32E+01 89.6%

IV
10% 1.57E+06 1.56E+06 0.76% 4.80E+04 4.18E+04 12.8% 5.00E+00 8.35E+00 66.9%
40% 6.83E+05 4.07E+05 40.4% 1.15E+05 7.27E+04 36.9% 1.23E+01 1.96E+01 59.8%
80% 3.62E+05 1.54E+05 57.5% 8.07E+04 6.29E+04 22.1% 2.25E+01 3.49E+01 55.2%

V
10% 4.68E+05 4.45E+05 4.8% 2.85E+04 3.31E+04 -16.0% 4.79E+00 8.43E+00 76.2%
40% 6.48E+05 3.84E+05 40.8% 1.03E+05 7.04E+04 31.5% 1.24E+01 1.98E+01 59.6%
80% 2.91E+05 1.22E+05 58.2% 7.45E+04 3.79E+04 49.1% 2.22E+01 3.51E+01 57.7%

VI
10% 9.67E+06 9.63E+06 0.38% 4.82E+04 3.47E+04 28.1% 4.98E+00 8.40E+00 68.6%
40% 8.23E+05 4.54E+05 44.8% 1.51E+05 8.26E+04 45.4% 1.24E+01 1.99E+01 60.3%
80% 4.24E+05 1.76E+05 58.4% 1.27E+05 7.07E+04 44.6% 2.18E+01 3.44E+01 57.7%

Note: the minus sign “-” means degradation

It can be seen from the results illustrated in Table
2 that ACAD-GM achieves better fitness values
than SGA in all 18 cases and has lower standard
deviations than SGA in most cases. When the
number of faulty cores increases in the system, the
advantage of ACAD-GM in finding better solutions
becomes clearer regardless of the workload
distribution. The average improvements on the
fitness value and the standard deviation are 33.9%
and 27.1%, respectively. Therefore, the proposed
schemes are efficient in aiding SGA to find better
solutions. These improvements, however, are at the

cost of averagely 63.7% more execution time of the
SGA. This overhead seems to be very large. We will
show, however, in the second experiment that the
time overhead depends actually on the iterations the
algorithm takes.

To further study the effect of the proposed AC
and AD schemes on the optimization behavior, the
evolution process in searching for the optimal
solution is compared. Since the improvements of
ACAD-GM on the 10% faults and the 80% faults
are two extreme cases for each workload
distribution, where evolution curves of the two

WSEAS TRANSACTIONS on COMPUTERS Jinxiang Wang, Zixu Wu, Fangfa Fu

E-ISSN: 2224-2872 492 Volume 14, 2015

algorithms tend to be overlapped and separate for
the 10% faults and 80% faults cases, respectively,
the six distribution cases with medium faulty
percentage (i.e., 40%) are illustrated as follows.

0 500 1000 1500 2000

105

106

107

Fi
tn

es
s v

al
ue

 (l
og

 sc
al

e)

Generations

 SGA
 ACAD-GM

0 50 100 150 200 250

106

107

Fig.4 Evolution process comparison under

Workload I

0 500 1000 1500 2000

105

106

107

Fi
tn

es
s v

al
ue

 (l
og

 sc
al

e)

Generations

 SGA
 ACAD-GM

0 50 100 150 200 250

106

107

Fig.5 Evolution process comparison under

Workload II

0 500 1000 1500 2000
105

106

107

Fi
tn

es
s v

al
ue

 (l
og

 sc
al

e)

Generations

 SGA
 ACAD-GM

0 50 100 150 200 250

106

107

Fig.6 Evolution process comparison under

Workload III

0 500 1000 1500 2000

106

107

Fi
tn

es
s v

al
ue

 (l
og

 sc
al

e)

Generations

 SGA
 ACAD-GM

0 50 100 150 200 250

107

Fig.7 Evolution process comparison under

Workload IV

0 500 1000 1500 2000

106

107
Fi

tn
es

s v
al

ue
 (l

og
 sc

al
e)

Generations

 SGA
 ACAD-GM

0 50 100 150 200 250
106

107

Fig.8 Evolution process comparison under

Workload V

0 500 1000 1500 2000

106

107

108

Fi
tn

es
s v

al
ue

 (l
og

 sc
al

e)

Generations

 SGA
 ACAD-GM

0 50 100 150 200 250
106

107

108

Fig.9 Evolution process comparison under

Workload VI

As seen from Fig.4 to Fig.9, although the
advantages of ACAD-GM over SGA are not clear
for the first 250 generations under Workload II and
Workload IV as demonstrated in Fig.5 and Fig.7,
ACAD-GM converges generally faster than SGA

WSEAS TRANSACTIONS on COMPUTERS Jinxiang Wang, Zixu Wu, Fangfa Fu

E-ISSN: 2224-2872 493 Volume 14, 2015

for all six workload distributions. This verifies the
effectiveness of the proposed AC and AD schemes.
As for the least improvement case on the fitness
value listed in Table 2, ACAD-GM only reduces the
fitness value by 0.04% compared with the SGA. The
comparison of evolution curves for this case is
illustrated in Fig.10 for the sake of completeness. It
can be observed that the advantage of ACAD-GM is
clear for the first 250 generations. And although it is
hard for both algorithms to find better solutions after
about 1200 generations due to limited task mapping
choices, ACAD-GM still produces solutions with
lower fitness values. Thus, this also justifies the
effectiveness of the AC and AD schemes.

0 500 1000 1500 2000

107

2x107

Fi
tn

es
s v

al
ue

 (l
og

 sc
al

e)

Generations

 SGA
 ACAD-GM

500 1000 1500 2000
3.96x106

4x106

4.04x106

Fig.10 Evolution process comparison under

Workload I with 10% faults

5.3 Experiment II
In this experiment, the ACAD-GM algorithm is
compared with the DA, the PSO, the DPSO and the
SGA algorithms in terms of workload balancing
capability, execution time and maxspan. Before
presenting the setup for this experiment and the
details of the results, the main search process of DA
is briefly described in Section 5.3.1 for clarity.

5.3.1 A baseline algorithm
The idea of presenting the DA here is to provide a
baseline for the comparison, since the solutions DA
generated does not vary with different trials.

As illustrated in Fig.11, DA generates solutions
by repeatedly sorting fault-free cores by the
workload on them and adding the heaviest
remaining task to the lightest fault-free core after the
sort. Although this would not guarantee a solution
with the lowest objective function value (i.e., the
value of Equation (5)) to be found, it provides a
better baseline algorithm than a random assignment
policy.

Fig.11 Pseudo code of DA

5.3.2 Setup for experiment II
In this experiment, totally 30 types of workload
scenarios are generated, where 20 and 40 tasks are
selected respectively for each core with different
network sizes varying from 4×4 to 12×12. For each
scenario, 10%, 20%, 40%, 60% and 80% of cores in
the manycore system are chosen to be faulty
randomly. Consequently, there are totally 150 faulty
cases for each algorithm. To present the results
clearly, these test cases are also categorized into six
groups according to the workload distribution, as
shown in Table 1.

Table 3 Parameters for algorithms

Algorithm Parameters
PSO c1=c2=1.7, W=0.6, Vmax=Xmax/2,

PopSize=20, Gmax=200
DPSO c1=c2=2.0, Vmax=40,

PopSize=20, Gmax=200
SGA generation gap ggap=0.95,

crossover rate pc=0.9, mutation
rate pm=0.01, PopSize=20,

Gmax=200
ACAD-GM generation gap ggap=0.95,

PopSize=20, Gmax=200

The parameter settings of the algorithms are
listed in Table 3, where DA is not included as it
does not require any parameter. The parameters of
PSO are chosen as recommended in [26], as it is
reported to have higher convergence rate than the
typical parameter set recommended by [27]. The
maximum range that a particle can fly (i.e., Xmax),
however, is limited to the total number of elements
in core set C, and the maximum velocity Vmax is
limited to Xmax/2, which is different from the usage

WSEAS TRANSACTIONS on COMPUTERS Jinxiang Wang, Zixu Wu, Fangfa Fu

E-ISSN: 2224-2872 494 Volume 14, 2015

presented in [26]. The reason for putting these
limitations to Xmax and Vmax is that assigning tasks to
cores outside of core set C is meaningless in our
experiment. For each stochastic algorithm, the
population size (PopSize) and the maximum
iteration number (Gmax) are set to 20 and 200,
respectively. And all four stochastic algorithms run
till Gmax iterations before exit. Their final results are
averaged over 100 trials.

5.3.3 Comparison of workload balancing
capability and execution time
In this section, workload balancing capabilities of
the algorithms are compared by considering
Equation (5) as the objective function. Therefore,
the algorithm that generates the lowest function
value is preferred. The value of the objective
function is referred to as the fitness value in this
experiment, and the results are normalized to DA.
Since it is not proper to display all the 150 results
for each algorithm due to the length of the paper,
only 10%, 40% and 80% of faults (i.e., totally 90
cases) for each algorithm are chosen to be illustrated
from Fig.12 to Fig.17.

The corresponding 90 execution time results for
each algorithm are listed in Table 4. The complete
750 results of the fitness value and 750 results of the
execution time are used for calculation only. Table 5
is a scoreboard summarized from the complete
results of the execution time. It shows the number of
times that an algorithm obtains a certain rank when
sorted by execution time, among all the 150 results
of the algorithm.

10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80%
0.0

0.5

1.0

1.5

4×4 6×6 8×8 10×10 12×12

N
or

m
al

iz
ed

 fi
tn

es
s v

al
ue

Faulty-core percentages with different network sizes

 DA
 PSO
 DPSO
 SGA
 ACAD-GM

Fig.12 Workload balancing capability comparison

under Workload I

10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80%
0

1

2

3

4

5

6

4×4 6×6 8×8 10×10 12×12

N
or

m
al

iz
ed

 fi
tn

es
s v

al
ue

Faulty-core percentages with different network sizes

 DA
 PSO
 DPSO
 SGA
 ACAD-GM

Fig.13 Workload balancing capability comparison

under Workload II

10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80%
0

1

2

3

N
or

m
al

iz
ed

 fi
tn

es
s v

al
ue

Faulty-core percentages with different network sizes

 DA
 PSO
 DPSO
 SGA
 ACAD-GM

4×4 6×6 8×8 10×10 12×12

Fig.14 Workload balancing capability comparison
under Workload III

10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80%
0

1

2

3

14

15

4×4 6×6 8×8 10×10 12×12

N
or

m
al

iz
ed

 fi
tn

es
s v

al
ue

Faulty-core percentages with different network sizes

 DA
 PSO
 DPSO
 SGA
 ACAD-GM

Fig.15 Workload balancing capability comparison

under Workload IV

WSEAS TRANSACTIONS on COMPUTERS Jinxiang Wang, Zixu Wu, Fangfa Fu

E-ISSN: 2224-2872 495 Volume 14, 2015

10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80%
0

1

2

3

4

5

6

7

11

12

13

4×4 6×6 8×8 10×10 12×12

N
or

m
al

iz
ed

 fi
tn

es
s v

al
ue

Faulty-core percentages with different network sizes

 DA
 PSO
 DPSO
 SGA
 ACAD-GM

Fig.16 Workload balancing capability comparison

under Workload V

10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80%
0.0

0.5

1.0

1.5

2.0

165

166

167

4×4 6×6 8×8 10×10 12×12

N
or

m
al

iz
ed

 fi
tn

es
s v

al
ue

Faulty-core percentages with different network sizes

 DA
 PSO
 DPSO
 SGA
 ACAD-GM

Fig.17 Workload balancing capability comparison

under Workload VI

Table 4 Execution time of algorithms corresponding to the 90 workload cases shown from Fig.12 to Fig.17
Workload

cases
Network

size
Faulty

percentage
Execution time for each algorithm (s)

DA PSO DPSO SGA ACAD-GM

I

4×4
10% 2.19E-03 2.15E-01 9.43E-01 2.80E-01 3.02E-01
40% 6.29E-03 2.79E-01 2.47E+00 3.64E-01 4.01E-01
80% 1.36E-02 4.13E-01 4.86E+00 5.02E-01 5.52E-01

6×6
10% 4.45E-03 2.46E-01 1.89E+00 3.25E-01 3.48E-01
40% 1.52E-02 4.12E-01 5.93E+00 5.39E-01 5.81E-01
80% 3.09E-02 5.99E-01 1.11E+01 8.20E-01 8.51E-01

8×8
10% 7.07E-03 2.81E-01 2.98E+00 3.66E-01 3.91E-01
40% 3.04E-02 7.18E-01 1.20E+01 7.98E-01 8.31E-01
80% 5.37E-02 6.02E-01 2.02E+01 1.22E+00 1.28E+00

10×10
10% 1.23E-02 3.84E-01 5.19E+00 4.53E-01 4.88E-01
40% 4.65E-02 1.04E+00 1.90E+01 1.02E+00 1.07E+00
80% 8.55E-02 1.48E+00 3.31E+01 1.79E+00 1.93E+00

12×12
10% 1.78E-02 4.29E-01 8.15E+00 5.46E-01 5.77E-01
40% 7.08E-02 1.19E+00 2.89E+01 1.37E+00 1.46E+00
80% 1.24E-01 1.98E+00 4.93E+01 2.65E+00 2.64E+00

II

4×4
10% 2.20E-03 2.15E-01 9.38E-01 2.78E-01 3.00E-01
40% 6.35E-03 2.79E-01 2.48E+00 3.65E-01 3.91E-01
80% 2.77E-02 4.32E-01 4.86E+00 4.99E-01 5.47E-01

6×6
10% 4.45E-03 2.46E-01 1.89E+00 3.25E-01 3.48E-01
40% 1.51E-02 4.17E-01 5.94E+00 5.39E-01 5.84E-01
80% 3.02E-02 6.26E-01 1.11E+01 8.25E-01 8.59E-01

8×8
10% 7.09E-03 2.80E-01 2.96E+00 3.66E-01 4.02E-01
40% 2.88E-02 6.80E-01 1.19E+01 7.76E-01 8.30E-01
80% 5.44E-02 6.38E-01 2.02E+01 1.22E+00 1.29E+00

10×10
10% 1.25E-02 4.14E-01 5.17E+00 4.56E-01 4.91E-01
40% 4.66E-02 1.01E+00 1.91E+01 1.02E+00 1.07E+00
80% 8.62E-02 1.30E+00 3.28E+01 1.84E+00 1.92E+00

12×12
10% 1.87E-02 4.47E-01 8.07E+00 5.46E-01 5.87E-01
40% 7.02E-02 1.19E+00 2.87E+01 1.39E+00 1.45E+00
80% 1.24E-01 2.18E+00 4.89E+01 2.50E+00 2.86E+00

III
4×4

10% 2.28E-03 2.20E-01 9.43E-01 2.83E-01 3.11E-01
40% 6.59E-03 2.85E-01 2.47E+00 3.62E-01 3.90E-01
80% 1.34E-02 4.28E-01 4.82E+00 5.22E-01 5.37E-01

6×6
10% 4.44E-03 2.50E-01 1.90E+00 3.25E-01 3.49E-01
40% 1.51E-02 4.53E-01 5.93E+00 5.16E-01 5.79E-01
80% 3.04E-02 6.01E-01 1.12E+01 8.09E-01 8.69E-01

WSEAS TRANSACTIONS on COMPUTERS Jinxiang Wang, Zixu Wu, Fangfa Fu

E-ISSN: 2224-2872 496 Volume 14, 2015

Table 4 (Continued)
Workload

cases
Network

size
Faulty

percentage
Execution time for each algorithm (s)

DA PSO DPSO SGA ACAD-GM

III

8×8
10% 7.25E-03 2.85E-01 2.97E+00 3.65E-01 4.06E-01
40% 2.89E-02 6.92E-01 1.20E+01 8.00E-01 8.25E-01
80% 5.35E-02 5.90E-01 2.04E+01 1.22E+00 1.28E+00

10×10
10% 1.22E-02 3.50E-01 5.19E+00 4.56E-01 4.85E-01
40% 4.67E-02 9.21E-01 1.92E+01 1.02E+00 1.07E+00
80% 8.48E-02 1.44E+00 3.31E+01 1.83E+00 1.89E+00

12×12
10% 1.79E-02 4.47E-01 8.10E+00 5.46E-01 5.74E-01
40% 7.14E-02 1.19E+00 2.88E+01 1.39E+00 1.47E+00
80% 1.25E-01 2.14E+00 4.94E+01 2.50E+00 2.86E+00

IV

4×4
10% 4.40E-03 2.47E-01 1.73E+00 3.24E-01 3.50E-01
40% 1.26E-02 3.72E-01 4.75E+00 4.78E-01 5.15E-01
80% 2.68E-02 4.16E-01 9.50E+00 8.05E-01 8.27E-01

6×6
10% 8.88E-03 3.13E-01 3.66E+00 3.95E-01 4.29E-01
40% 2.98E-02 5.83E-01 1.18E+01 8.10E-01 8.44E-01
80% 6.05E-02 8.97E-01 2.21E+01 1.38E+00 1.45E+00

8×8
10% 1.42E-02 3.77E-01 5.92E+00 4.96E-01 5.36E-01
40% 5.78E-02 1.07E+00 2.37E+01 1.23E+00 1.34E+00
80% 1.08E-01 1.16E+00 4.05E+01 2.20E+00 2.35E+00

10×10
10% 2.46E-02 5.04E-01 1.02E+01 6.58E-01 7.16E-01
40% 9.47E-02 1.64E+00 3.81E+01 1.78E+00 1.91E+00
80% 1.71E-01 2.16E+00 6.62E+01 4.06E+00 4.09E+00

12×12
10% 3.61E-02 6.36E-01 1.60E+01 8.45E-01 8.47E-01
40% 1.40E-01 2.47E+00 5.81E+01 2.63E+00 2.85E+00
80% 2.47E-01 6.33E+00 1.00E+02 6.42E+00 6.47E+00

V

4×4
10% 4.29E-03 2.47E-01 1.73E+00 3.24E-01 3.49E-01
40% 1.29E-02 3.60E-01 4.76E+00 4.79E-01 5.31E-01
80% 2.70E-02 3.75E-01 9.54E+00 8.03E-01 8.23E-01

6×6
10% 8.83E-03 3.13E-01 3.65E+00 3.94E-01 4.31E-01
40% 3.01E-02 5.50E-01 1.17E+01 7.84E-01 8.21E-01
80% 6.02E-02 9.38E-01 2.20E+01 1.37E+00 1.43E+00

8×8
10% 1.42E-02 3.74E-01 5.82E+00 4.92E-01 5.23E-01
40% 5.78E-02 9.96E-01 2.35E+01 1.27E+00 1.32E+00
80% 1.07E-01 1.17E+00 4.06E+01 2.24E+00 2.35E+00

10×10
10% 2.47E-02 5.03E-01 1.02E+01 6.75E-01 6.98E-01
40% 9.26E-02 1.59E+00 3.81E+01 1.78E+00 1.90E+00
80% 1.70E-01 2.14E+00 6.61E+01 3.58E+00 4.08E+00

12×12
10% 3.69E-02 6.37E-01 1.61E+01 8.16E-01 8.34E-01
40% 1.41E-01 2.50E+00 5.80E+01 2.55E+00 2.69E+00
80% 2.47E-01 6.54E+00 9.98E+01 6.33E+00 6.45E+00

VI

4×4
10% 4.27E-03 2.47E-01 1.73E+00 3.24E-01 3.51E-01
40% 1.27E-02 4.39E-01 4.79E+00 4.98E-01 5.22E-01
80% 2.69E-02 5.85E-01 9.56E+00 8.08E-01 8.45E-01

6×6
10% 8.93E-03 3.35E-01 3.68E+00 4.10E-01 4.31E-01
40% 2.98E-02 5.69E-01 1.18E+01 7.96E-01 8.33E-01
80% 6.14E-02 9.60E-01 2.22E+01 1.37E+00 1.45E+00

8×8
10% 1.42E-02 4.08E-01 5.91E+00 4.95E-01 5.37E-01
40% 5.77E-02 1.04E+00 2.38E+01 1.26E+00 1.33E+00
80% 1.08E-01 1.39E+00 4.05E+01 2.29E+00 2.35E+00

10×10
10% 2.44E-02 5.96E-01 1.02E+01 6.66E-01 7.05E-01
40% 9.30E-02 1.85E+00 3.82E+01 1.79E+00 1.89E+00
80% 1.70E-01 2.25E+00 6.62E+01 3.56E+00 3.75E+00

12×12
10% 3.58E-02 6.37E-01 1.60E+01 7.83E-01 8.22E-01
40% 1.43E-01 2.49E+00 5.82E+01 2.58E+00 2.70E+00
80% 2.49E-01 6.27E+00 9.96E+01 6.17E+00 6.38E+00

WSEAS TRANSACTIONS on COMPUTERS Jinxiang Wang, Zixu Wu, Fangfa Fu

E-ISSN: 2224-2872 497 Volume 14, 2015

Table 5 Algorithm ranking based on execution time

Algorithm Rank (rank 1 is the fastest)
1 2 3 4 5

DA 150 0 0 0 0
PSO 0 142 6 2 0

DPSO 0 0 0 0 150
SGA 0 8 140 2 0

ACAD-GM 0 0 4 146 0

Generally, it can be seen from Fig.12 to Fig.17
that, for all test cases, PSO and DPSO could not
guarantee better workload balancing capabilities
than DA, and PSO cannot generate better solutions
than DPSO. When the number of tasks executed on
a single core increases from 20 to 40, PSO has
higher probability to be trapped in the local optima,
resulting in more unbalanced workload distribution,
while the results of DPSO does not vary largely. For
example, in a 16-core system with 13 faulty cores
(i.e., the case of 80% fault and 4×4 network size),
PSO handles well for Workload I and Workload III
but not for other workload distributions. Especially
for Workload VI, it generates solutions with the
fitness value almost 166 times larger than DA.
While for DPSO, the fitness value it achieved in the
worst case is only about two times the value for DA.
DPSO produces smaller fitness values as the
number of faulty cores increases for a given network
size. On the other hand, as shown in Table 4 and
Table 5, PSO requires the second shortest execution
time in most cases (142 cases to be exact), while
DPSO has the longest execution time in all cases.

Therefore, it can be concluded from the above
results that although PSO operates fast and could
generate good solutions in some cases, it is
generally not as effective as DPSO in solving
discrete problems. Meanwhile, although DPSO
outperforms DA in generating solutions with lower
fitness values in most cases, it requires the longest
execution time.

As for SGA and ACAD-GM, it can be observed
that both the algorithms produce solutions better
than DA in all cases and their execution time are in
the same order of magnitude as PSO, which are
generally one or two orders of magnitude lower than
DPSO. The figures also shows that for a given
network size, SGA and ACAD-GM produce more
balanced workload distribution as the number of
faulty cores increases, which is similar to the
behavior of DPSO. The main reason for this
phenomenon is that when more cores fail, more
combinations can be tried to find an optimal
solution. Meanwhile, more execution time is
required (as shown in Table 4).

A more detailed comparison between ACAD-
GM and other algorithms has been performed based
on the exact 750 fitness values (not included here
due to the length of the paper). And we found that,
in all 150 faulty cases, ACAD-GM achieves on
average 86%, 88%, 37% and 16% improvements on
the fitness value (i.e., lower fitness value) compared
with DA, PSO, DPSO and SGA, respectively. A
detailed comparison based on the complete 750
results of the execution time shows that ACAD-GM
requires on average 35%, 36.3% and 6.2% more
execution time than DA, PSO and SGA,
respectively, while reduces 90.9% execution time
compared with DPSO.

5.3.4 Comparison of maxspan
The results illustrated from Fig.18 to Fig.23 are

the maxspans generated by each algorithm under six
workload distribution cases.

10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80%
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

4×4 6×6 8×8 10×10 12×12

N
or

m
al

iz
ed

 m
ax

sp
an

Faulty-core percentages with different network sizes

 DA
 PSO
 DPSO
 SGA
 ACAD-GM

Fig.18 Maxspan comparison under Workload I

10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80%
0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

4×4 6×6 8×8 10×10 12×12

N
or

m
al

iz
ed

 m
ax

sp
an

Faulty-core percentages with different network sizes

 DA
 PSO
 DPSO
 SGA
 ACAD-GM

Fig.19 Maxspan comparison under Workload II

WSEAS TRANSACTIONS on COMPUTERS Jinxiang Wang, Zixu Wu, Fangfa Fu

E-ISSN: 2224-2872 498 Volume 14, 2015

10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80%
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

4×4 6×6 8×8 10×10 12×12

N
or

m
al

iz
ed

 m
ax

sp
an

Faulty-core percentages with different network sizes

 DA
 PSO
 DPSO
 SGA
 ACAD-GM

Fig.20 Maxspan comparison under Workload III

10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80%
0.80

0.85

0.90

0.95

1.00

1.05

1.10

4×4 6×6 8×8 10×10 12×12

N
or

m
al

iz
ed

 m
ax

sp
an

Faulty-core percentages with different network sizes

 DA
 PSO
 DPSO
 SGA
 ACAD-GM

Fig.21 Maxspan comparison under Workload IV

10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80%
0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

4×4 6×6 8×8 10×10 12×12

N
or

m
al

iz
ed

 m
ax

sp
an

Faulty-core percentages with different network sizes

 DA
 PSO
 DPSO
 SGA
 ACAD-GM

Fig.22 Maxspan comparison under Workload V

It can be discovered generally from Fig.18 to

Fig.23 that DPSO, SGA and ACAD-GM produce
smaller maxspans than DA and PSO in most cases.
And the worst maxspan of PSO is only 10% larger
than that of DA, as shown in Fig.19. Comparing

with the results from Fig.12 to Fig.17, it can be
observed that a more balanced workload distribution
does not necessarily guarantee a smaller maxspan.
This is because the maxspan only depends on the
maximum workload in the system. And if the
workload on one core is much larger than any of the
workloads on other cores before migration, the
algorithms would map more tasks onto the light-
loaded cores first due to the restriction of Equation
(5). Thus if the workload on any of the other cores
does not exceed the workload on the originally
heaviest-loaded core, then the maxspan after
migration remains the same. A detailed analysis
based on the complete 750 results of the maxspan
shows that ACAD-GM achieves on average 8.67%,
5.13%, 0.98% and 0.14% improvements on the
maxspan compared with DA, PSO, DPSO and SGA,
respectively.

Table 6 Improvements of ACAD-GM summarized

from Experiment II

Aspect Algorithms being compared
DA PSO DPSO SGA

Fitness value 86% 88% 37% 16%
Execution

time -35% -36.3% 90.9% -6.2%

Maxspan 8.67% 5.13% 0.98% 0.14%
Note: the minus sign “-” means degradation

For clarity, the improvements of the proposed

ACAD-GM algorithm on fitness value, execution
time and maxspan compared with the other four
algorithms are summarized in Table 6. Together
with the above analysis, it can be seen from Table 6
that although ACAD-GM has little advantage in
shortening the maxspan, it can provide the best-
balanced workload distribution after task migration,
which is important to the lifetime of the whole

10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80% 10% 40% 80%
0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

4×4 6×6 8×8 10×10 12×12

N
or

m
al

iz
ed

 m
ax

sp
an

Faulty-core percentages with different network sizes

 DA
 PSO
 DPSO
 SGA
 ACAD-GM

Fig.23 Maxspan comparison under Workload VI

WSEAS TRANSACTIONS on COMPUTERS Jinxiang Wang, Zixu Wu, Fangfa Fu

E-ISSN: 2224-2872 499 Volume 14, 2015

manycore system. Moreover, the added schemes in
ACAD-GM improve the workload balancing
capability of SGA by 16% while only adds 6.2% of
the execution time. Since the extra computations
introduced by the AC and AD schemes in each
generation are constant for a given faulty case, this
time overhead varies almost linearly as the
maximum generation changes from 2000 to 200,
resulting in approximately 9 times smaller than the
ratio 63.7% shown in Experiment I.

6 Conclusion
In this paper, a genetic task migration algorithm,
namely ACAD-GM, is proposed towards workload
balancing for fault recovery in NoC-based manycore
systems. It incorporates an adaptive crossover
scheme and a chaotic disturbance scheme with the
standard genetic algorithm to improve the searching
efficiency in solving the task migration problem.
Experiments verify the effectiveness of the proposed
schemes and shows that the ACAD-GM has better
workload balancing capability compared with four
relevant algorithms. The time overhead caused by
the AC and the AD schemes varies almost linearly
with the number of search iterations.

Acknowledgements
This research was supported by the Harbin Applied
Technology Research and Development Project
(Young Talents for Scientific and Technological
Innovation) (Grant No. 2013RFQXJ095) and the
Fundamental Research Funds for the Central
Universities (Grant No. HIT.NSRIF.2014039). The
authors would also like to thank the anonymous
reviewers for their valuable suggestions.

References:
[1] http://www.tilera.com.
[2] D. N. Truong, W. H. Cheng, T. Mohsenin, Z.

Yu, A. T. Jacobson, G. Landge et al., A 167-
processor computational platform in 65 nm
CMOS, IEEE Journal of Solid-State Circuits,
Vol.44, No.4, 2009, pp. 1130-1144.

[3] Z. Lu and A. Jantsch, Trends of terascale
computing Chips in the next ten years, in Proc.
of IEEE 8th International Conference on ASIC,
2009, pp. 62-66.

[4] http://www.jedec.org.
[5] R. Marculescu, U. Y. Ogras, L. S. Peh, N. E.

Jerger, and Y. Hoskote, Outstanding research
problems in NoC design: system,

microarchitecture, and circuit perspectives,
IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol.28,
No.1, 2009, pp. 3-21.

[6] S. Borkar, N. P. Jouppi, and P. Stenstrom,
Microprocessors in the era of terascale
integration, in Proc. of the conference on
Design, automation and test in Europe, EDA
Consortium, 2007, pp. 237-242.

[7] S. Mitra, K. Brelsford, Y.M. Kim, H.H.K. Lee,
and Y. Li, Robust system design to overcome
CMOS reliability challenges, IEEE Journal on
Emerging and Selected Topics in Circuits and
Systems, Vol.1, No.1, 2011, pp. 30-41.

[8] L. Huang, F. Yuan, and Q. Xu, Lifetime
reliability-aware task allocation and scheduling
for MPSoC platforms, in Proc. of the
Conference on Design, Automation and Test in
Europe, 2009, pp. 51-56.

[9] C. Lee, H. Kim, H. W. Park, S. Kim, H. Oh,
and S. Ha, A task remapping technique for
reliable multi-core embedded systems, in Proc.
of the eighth IEEE/ACM/IFIP international
conference on Hardware/software codesign
and system synthesis, 2010, pp. 307-316.

[10] A. Salman, I. Ahmad, and S. Al-Madani,
Particle swarm optimization for task
assignment problem, Microprocessors and
Microsystems, Vol.26, No.8, 2002, pp. 363-371.

[11] F. A. Omara and M. M. Arafa, Genetic
algorithms for task scheduling problem,
Journal of Parallel and Distributed Computing,
Vol.70, No.1, 2010, pp. 13-22.

[12] A. Y. Zomaya and Y. H. Teh, Observations on
using genetic algorithms for dynamic load-
balancing, IEEE Transactions on Parallel and
Distributed Systems, Vol.12, No.9 , 2001, pp.
899-911.

[13] P. Mesidis and L. S. Indrusiak, Genetic
mapping of hard real-time applications onto
NoC-based MPSoCs - A first approach, in Proc.
of the 6th International Workshop on
Reconfigurable Communication-centric
Systems-on-Chip, 2011, pp.1,6, pp. 20-22.

[14] M. Srinivas and L. M. Patnaik, Adaptive
probabilities of crossover and mutation in
genetic algorithms, IEEE Transactions on
Systems, Man and Cybernetics, Vol.24, No.4,
1994, pp. 656-667.

[15] J. A. Vasconcelos, J. A. Ramirez, R. H. C.
Takahashi and R. R. Saldanha, Improvements
in genetic algorithms, IEEE Transactions on
Magnetics, Vol.37, No.5, 2001, pp. 3414-3417.

[16] D. W. Boeringer, D. H. Werner, and D. W.
Machuga, A simultaneous parameter adaptation

WSEAS TRANSACTIONS on COMPUTERS Jinxiang Wang, Zixu Wu, Fangfa Fu

E-ISSN: 2224-2872 500 Volume 14, 2015

scheme for genetic algorithms with application
to phased array synthesis, IEEE Transactions
on Antennas and Propagation, Vol.53, No.1,
2005, pp. 356-371.

[17] R. C. Eberhart and J. Kennedy, A new
optimizer using particle swarm theory, in Proc.
of the sixth international symposium on micro
machine and human science, 1995, pp. 39-43.

[18] J. Kennedy and R. C. Eberhart, A discrete
binary version of the particle swarm algorithm,
in Proc. of 1997 IEEE International
Conference on Systems, Man, and Cybernetics,
1997. Computational Cybernetics and
Simulation., 1997, pp. 4104-4108.

[19] H. Izakian, B. T. Ladani, A. Abraham, and V.
Snasel, A discrete particle swarm optimization
approach for grid job scheduling, International
Journal of Innovative Computing, Information
and Control, Vol.6, No.9, 2010, pp. 4219-4233.

[20] A. J. Chipperfield, P. Fleming, and H.
Pohlheim, Genetic Algorithm Toolbox: For Use
with MATLAB User's Guide (version 1.2),
University of Sheffield, Department of
Automatic Control and Systems Engineering,
1994.

[21] W. Abdulal and S. Ramachandram, Reliability-
aware genetic scheduling algorithm in grid
environment, 2011 International Conference
on Communication Systems and Network
Technologies, 2011, pp. 673-677.

[22] E. M. Rudnick, J. H. Patel, G. S. Greenstein,
and T. M. Niermann, A genetic algorithm
framework for test generation, IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol.16, No.9,
1997, pp. 1034-1044.

[23] M. W. Li, W. C. Hong, and H. G. Kang, Urban
traffic flow forecasting using Gauss-SVR with
cat mapping, cloud model and PSO hybrid
algorithm, Neurocomputing, Vol.99, 2013, pp.
230-240.

[24] D. Yang, Z. Liu, and J. Zhou. Chaos
optimization algorithms based on chaotic maps
with different probability distribution and
search speed for global optimization,
Communications in Nonlinear Science and
Numerical Simulation, Vol.19, No.4, 2014, pp.
1229-1246.

[25] R. Dick, Embedded system synthesis
benchmarks suites, 2008.

[26] I. C. Trelea, The particle swarm optimization
algorithm: convergence analysis and parameter
selection, Information processing letters,
Vol.85, No.6, 2003, pp. 317-325.

[27] M. Clerc, The swarm and the queen: towards a
deterministic and adaptive particle swarm
optimization, in Proc. of the 1999 Congress on
Evolutionary Computation, 1999, pp. 1951-
1957.

WSEAS TRANSACTIONS on COMPUTERS Jinxiang Wang, Zixu Wu, Fangfa Fu

E-ISSN: 2224-2872 501 Volume 14, 2015

