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Abstract: - Recovery from permanent core faults in NoC-based manycore systems usually requires migrating 
tasks from faulty cores to fault-free cores, where balanced workloads are commonly desired. Finding optimal 
migration destinations for tasks, however, is a challenging issue due to the time complexity of the search 
process. To cope with this, in this paper, a genetic algorithm based task migration algorithm is proposed, where 
the adaptive crossover (AC) scheme and the An chaotic mapping disturbance (AD) scheme are incorporated to 
improve the search efficiency. Experiments show that the modifications to the standard genetic algorithm (SGA) 
are effective, and the proposed task migration algorithm outperforms two PSO-based algorithms, the SGA and 
a deterministic algorithm (DA) in finding more balanced migration solutions. The average improvements of the 
proposed algorithm over the DA, PSO, DPSO, and SGA algorithms are 86%, 88%, 37%, and 16%, respectively. 
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1 Introduction 
The CMOS technology today has enabled hundreds 
of processor cores to be fabricated on a single chip 
[1,2] and promises the integration of thousands of 
cores in the near future [3]. With such large number 
of processor cores on chip, the traditional bus-based 
architecture is no longer feasible due to its lack of 
scalability. Typically, these chips employ the 
network-on-chip (NoC) communication architecture 
and are known as the NoC-based manycore systems. 
Although such systems can provide significant 
performance enhancement, growing power density 
accelerates the current-related and thermo-related 
failures [4]. Thus, besides the cause of 
manufacturing defects, permanent faults may also 
occur in processor cores at runtime due to the 
accelerated aging, which poses a great challenge for 
fault tolerance in manycore systems [5,6,7]. 

To ensure correct system functionality, faulty 
processor cores are usually eliminated from the 
system logically by migrating tasks to other fault-
free cores and not assigning new tasks to the faulty 
cores any more. Although final migration decisions 
differ according to different specific application 
requirements, it is generally preferred that the 
workload on each core should be balanced before 
and after migration, since an unbalanced workload 
would cause thermal hotspots and thermal stress, 
making the cores age differently and resulting in 

shorter lifetime for the whole system [8]. Moreover, 
since a balanced workload is beneficial to the 
parallel execution of application programs, it helps 
to alleviate the throughput degradation due to the 
decrease in available processor cores. Therefore, 
this work focuses on finding a balanced migration 
solution for core failures in manycore systems. The 
tasks targeted in this paper are compute-intensive 
tasks, which have negligible communications and 
can be considered as independent tasks. 

To find a balanced workload distribution, it 
seems attractive to remap all the tasks in the system 
[9] since this would produce the most balanced 
solution for the faulty system. The communication 
cost of remapping all tasks, however, could be 
extremely large, especially for manycore systems 
with multiple applications, and the tasks on fault-
free cores might have to be halted for remapping, 
which causes unnecessary performance degradation. 
Meanwhile, the effort required to search for the best 
solution could grow sharply with the increasing 
number of processors cores [9]. Hence, this strategy 
is effective only when the number of tasks and 
processor cores is small.  

Besides remapping all tasks, an alternative 
approach is to remap the tasks being affected by 
faulty cores. Although finding the most balanced 
workload distribution cannot be guaranteed at this 
time, the solution space and the searching effort are 
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reduced dramatically. Therefore, this approach is 
actually more feasible than the former one to 
address the task migration problem for fault 
tolerance in manycore systems. 

Selecting destination cores for tasks to be 
migrated is basically a task assignment problem, 
which is NP-complete [10]. Hence, it is infeasible to 
search for the optimal exhaustively due to its time 
complexity. To obtain a migration solution with 
balanced workloads, in this paper, we present a task 
migration algorithm by adopting and improving the 
Genetic Algorithm (GA). By modifying the constant 
crossover probability to a parameter adjusting itself 
adaptively over iterations and by adding a chaotic 
disturbance to the best individual, our Adaptive 
Crossover An chaotic mapping Disturbed Genetic 
Migration algorithm, namely ACAD-GM, is able to 
generate a near-optimal migration solution 
efficiently. The rest of the paper is organized as 
follows. Section 2 presents a brief review of some 
relevant work. Section 3 demonstrates the targeted 
architecture and formulates the task migration 
problem based on the manycore architecture. In 
Section 4, the genetic task migration algorithm is 
described in detail. Then, in Section 5, the 
experiment results are discussed. Finally, Section 6 
concludes the paper. 
 
 
2 Related Work 
As mentioned in the previous section, choosing 
optimal destinations for tasks is NP-complete. For 
the problem in this work, to assign n tasks to m 
processor cores, there would be mn possible 
solutions. To obtain a near-optimal solution or even 
the optimal solution in reasonable time, efficient 
algorithms have been introduced in the literature. 

Genetic Algorithm (GA), which is a well-known 
population-based stochastic search algorithm, has 
been adopted to solve the problem of task 
scheduling and mapping both in traditional parallel 
computing systems and in multicore and manycore 
systems [11,12,13]. It iteratively searches the 
solution space with a set of individuals and updates 
the population by selection, crossover and mutation 
operations. Because it searches multiple points 
simultaneously and has the capability of exploring 
new space, GA has a low probability to be trapped 
at local optima, which is essential to be used in the 
many-peaked search space. To guide the searching 
process efficiently, parameter adaptation schemes 
have been proposed. In [14], the difference between 
the average and the maximum fitnesses is used as a 
representation of detecting the convergence of GA. 
The probabilities of crossover and mutation for each 

individual are calculated separately according to the 
difference and the fitness value of the solution. 
Similarly, in [15], the probabilities of crossover and 
mutation are also designed to be changed to 
maintain population diversity. However, the 
measurement of the genetic diversity used is the 
ratio between the mean and the maximum values of 
the fitness function at each generation. Other 
parameters such as the mutation rate, mutation range 
and number of crossovers are also important to the 
performance of GA. A simultaneous adaptation 
scheme of tuning these parameters dynamically is 
presented in [16]. For all these GA variations, the 
main effort is to achieve better tradeoff between 
accelerating algorithm convergence and maintaining 
exploitation capability to new space. Although the 
search process can be controlled more precisely 
with more parameters, the cost of extra computation 
is increased, which should be maintained as low as 
possible. 

Besides GA, the Particle Swarm Optimization 
(PSO) is another population-based algorithm [17]. It 
has been successfully employed to solve the 
complex optimization problems. It should be noted 
that the standard PSO operates in continuous space. 
Although it has been shown that solving the task 
assignment problem with PSO is feasible [10], the 
characteristic of discrete space differs a lot from that 
of the continuous space. To extend the capability of 
PSO in solving discrete optimization problems, a 
binary version of PSO is proposed in [18]. Although 
the binary PSO is effective and has been widely 
adopted, multi-valued numbers have to be converted 
to binary representations before using the approach, 
which requires extra processing power. To reduce 
the conversion cost, a discrete PSO (DPSO) is 
presented in [19] for the job scheduling problem. It 
introduces a direct encoding scheme to represent the 
positions of particles and derives a method for 
updating positions of particles without using the 
sigmoid transformation as in the binary PSO. The 
search process of PSOs is generally simpler than 
that of GAs, but PSOs also faces the problem of 
leveraging the exploration and the exploitation 
capacities. In addition, since parameters have great 
influence on the performance of PSOs, parameters 
must be selected carefully for efficient optimization. 
 
 
3 Problem Formulation 
This work focuses on providing a task migration 
solution when cores fail in a NoC-based manycore 
system. The targeted system architecture hardware 
consists of M×N homogeneous processor cores 
connected by an M×N 2D mesh NoC via on-chip 
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routers, as shown in Fig.1. Tasks are executed on 
each processor core. 

 
Fig.1 NoC-based manycore system architecture 

 
Without loss of generality, the workload on each 

core before failures is assumed to be different to 
capture the execution process of tasks entering and 
leaving the system dynamically. Let w(x) denotes 
the workload of x, where x is either a processor core 
or a task. Then the total workload on core ci after 
task tj being migrated to it can be expressed as: 

( ) ( ) ( )i i jw c w c w t′ = + ,                        (1) 
where w’(ci) and w(ci) represent the workload on ci 
after and before migration, respectively. Let T={t1, 
t2, … , tm} denotes the task set on faulty cores, 
where m is the total number of tasks on all faulty 
cores. And let C={c1, c2, … , cn} denotes the set of 
fault-free cores, where n is the total number of all 
faulty-free cores. Then the task migration problem is 
to find a mapping f:T→C, so that each element in T 
is mapped to an element in C. If let ΔWi be the extra 
workload introduced by the migrated tasks on ci, 
then 
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Thus, Equation (1) can be extended to 
( ) ( )i i iw c w c W′ = + Δ .                      (4) 

To obtain a balanced workload distribution on all 
fault-free cores after the migration, Equation (5) is 
calculated. 
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The reason why Equation (5) is used instead of the 
standard deviation of workloads is that it requires 
less computation. 

Therefore, the task migration problem in this 
work can be finally expressed as 
Find: a solution S∈Cm for f:T→C, 
Such that: E is minimized. 
 
 
4 Genetic Migration Algorithm 
In this section, a genetic migration algorithm based 
on the improved Genetic Algorithm is presented to 
solve the task migration problem.  
 
 
4.1 Encoding scheme and fitness function 
To solve a problem with GA, the solution of the 
problem must be encoded as a chromosome. For the 
migration problem, the chromosome is constructed 
as follows. 

 
Fig.2 Chromosome representation 

 
As illustrated in Fig.2, a chromosome with m 

tasks to be migrated has m elements, which has the 
same length as a solution S to f. Similar to the 
meaning of each element in S, the value of each 
element in a chromosome represents the destination 
core number the task is mapped. Thus, for the 
chromosome exemplified in Fig.2, it can be 
obtained that tasks t1 and t3 are mapped to core c2, 
while tasks t2 and tm are mapped to core c5 and c10, 
respectively. 

The main objective of the task migration 
presented in this paper is to minimize the workload 
differences among all fault-free cores after failures. 
Since the chromosome providing smaller function 
value calculated with Equation (5) produces more 
balanced workload distribution, Equation (5) is used 
as the fitness function to evaluate the fitness value 
for each individual (i.e. each chromosome). 
 
 
4.2 ACAD-GM algorithm 
With the above migration solution representation 
and the fitness function, a near-optimal solution can 
be obtained by a standard GA. To improve the 
searching efficiency, the ACAD-GM algorithm is 
proposed, where the adaptive crossover (AC) 
scheme and the An chaotic mapping disturbance 
(AD) scheme are introduced. The pseudo code of 
the ACAD-GM algorithm is illustrated in Fig.3. 
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Algorithm: ACAD-GM
Input: task workload set w(T);

core workload set w(C)
Output: migration solution

1: initialize population (Npop individuals)
2: evaluate population using equation (5)
3: g = 0
4: while g < Gmax do
5:     g = g+1
6:    select Nsel individuals from the whole

population using the SUS method
7:   apply crossover operations to the selected

Nsel individuals using the AC scheme
8:   apply mutation operations to the individuals

after crossover
9:   evaluate new population using equation (5)

10: apply chaos disturbance to the individual
with the highest fitness (AD scheme)

11: return migration solution
 

Fig.3 Pseudo code of ACAD-GM algorithm 
 

To achieve a balanced workload distribution, the 
workload of each task in task set T and the total 
workload on each faulty-free core in set C before 
migration are provided as the input to the ACAD-
GM algorithm. In the first step, Npop individuals are 
generated randomly to form an initial population. 
Then, Equation (5) is used to evaluate the fitness 
value for each individual. For the termination 
criteria of GA, a maximum number of generations 
Gmax is defined. Thus, the algorithm would not stop 
even if no better solution could be found for many 
consecutive generations. This helps to present the 
best capability that the algorithm can provide within 
Gmax iterations. To enable the evolution process, 
some of the individuals need to be selected for 
mating. The selection method used in this paper is 
the Stochastic Universal Sampling (SUS), as it has 
lower computation complexity than the Roulette 
Wheel Selection [20] and it could provide better 
results [21]. The number of individuals to be 
selected (i.e., the Nsel in Fig.3) can be controlled by 
defining a selection rate, also known as the 
generation gap [22]. After the selection, the AC 
scheme (described in detail in Section 4.2.1) and the 
mutation operations are applied to the Nsel 
individuals. The newly generated Nsel individuals, 
together with the ones that have not been selected in 
the previous selection step, form a new population. 
This new population is then evaluated with the 
fitness function. To improve the search ability of the 
standard GA in the solution space, a chaotic 
disturbance (i.e., the AD scheme, described in detail 

in Section 4.2.2) has been added to the best solution 
found in the current generation. After Gmax 
generations, the ACAD-GM algorithm produces the 
final migration solution. 

The AC and the AD schemes are presented in the 
following two sections. 

 
4.2.1 AC scheme 
Crossover is an important operator and has a great 
influence on the performance of GAs. Since 
crossover creates new individuals with information 
from the parent individuals, high crossover rate 
generally yields fast population convergence, while 
low crossover rate maintains population diversity. In 
addition, the number of crossover points also affects 
the search process. 

To improve the search ability of the standard GA, 
we first combine a decreased crossover rate with the 
adaptive crossover probability approach adopted 
from [14]. The combined crossover rate pcomb is 
calculated by Equation (7). 

max
comb adap max

max max

,   1,2,...,G g gp p g G
G G

−
= + ⋅ =   (7) 

where, g denotes the current number of generations, 
and padap is the adopted crossover probability. The 
construction of Equation (7) is to accelerate the 
convergence of the adopted approach at early 
generations. Then, the influence of padap becomes 
dominant gradually when the population evolves. 
The padap is given by the following equation: 

max p
avg

max avgadap

avg

,   

1         ,  

p

p

f f
f f

f fp
f f

−⎧
≥⎪ −= ⎨

⎪ <⎩

,             (8) 

where, fmax and favg are the maximum and average 
ranked fitness values of all parents (i.e., the Nsel 
individuals), respectively. And fp is the larger of the 
ranked fitness values of two parents to be crossed. 
The ranked fitness value of an individual here is 
calculated by sorting individuals of the population 
according to their original fitness values obtained 
with Equation (5) and reassigning a new fitness 
value for each one, so that the individual which 
provides better solution could have higher ranked 
fitness value and these ranked fitness values are 
limited to a fixed range throughout all iterations. 

With the combined scheme, the convergence of 
the population is accelerated. This, however, also 
increases the probability of premature convergence 
to local optima. To overcome this problem, the 
number of crossover points is designed to vary with 
the evolution process as well. At early generations, 
multi-point crossover is employed to encourage the 
exploration of new solution space, which mitigates 
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the problem of premature convergence. Then, the 
number of crossover points decreases gradually to 
one as the population evolves, which helps to 
maintain better local exploitation, as single-point 
crossover is less disruptive. Since too many 
crossover points induce excessive computation, in 
this paper, 3-point crossover is chosen as the initial 
condition. The number selection of crossover points 
is described by Equation (9): 

2
max3

1 2
point max max3 3

1
max3

3,   

2,   

1,   

g G

N G g G

g G

⎧ > ⋅⎢ ⎥⎣ ⎦⎪⎪= ⋅ < ≤ ⋅⎢ ⎥ ⎢ ⎥⎨ ⎣ ⎦ ⎣ ⎦
⎪

≤ ⋅⎢ ⎥⎪ ⎣ ⎦⎩

,      (9) 

where, Npoint is the number of crossover points, and 
g is the current number of generations as defined in 
Equation (7). 
 
 
4.2.2 AD scheme 
Recent studies have shown that chaos optimization 
algorithms have high efficiency in searching for the 
global optima [23,24]. To further improve the 
search ability of GA, a chaotic disturbance is added 
to the best individual of the current generation. The 
disturbance is basically a change of some values of 
the elements in the chromosome. Since the main 
operations in GA have provided an effective search 
method, this disturbance is designed to be as little as 
possible to avoid disrupting the main search process.  

The An chaotic map is adopted in this paper, as it 
exhibits a random ergodic behavior with decreasing 
probabilities of producing values from 0 to 1, which 
defers from other chaotic maps such as the Cat map, 
the Logistic map and the Tent map [23]. This 
characteristic is helpful for improving the capability 
of a local exploitation since it introduces slight 
disturbance for most cases while providing a chance 
to explore further points in the solution space at the 
same time. The An mapping function is shown in 
Equation (10). 

3 1
2 4

1 1 1
2 4

,   [0,0.5)
,   [0.5,1]

n
n

n

x x
x

x x+

+ ∈⎧⎪= ⎨
− ∈⎪⎩

,               (10) 

where xn is the value of variable x in the n-th 
iteration. This equation can be used to map a 
uniformly distributed random variable to a non-
uniformly distributed one if sufficient iterations 
have been performed to ensure that the sequence 
enters the chaotic state. And a random number r 
between 0 and 1 can, thus, be obtained with the An 
map.  

To avoid disrupting the main search process of 
the standard GA, in our scheme, the r/10 is used to 
determine the percentage of elements in the best 

chromosome to be disturbed. Since the position of a 
better chromosome is not known a priori, which 
elements would be disturbed are chosen randomly in 
our scheme. For the same reason, the value of an 
element in the chromosome is also chosen randomly 
in the core set C. 

After applying the disturbance, the fitness value 
of the new chromosome is calculated. To prevent 
corrupting the best solution found by the population, 
the best chromosome is replaced by the new one 
only if the new chromosome could produce smaller 
value of Equation (5) than that of the best one. 
 
 
5 Experimental Results 
In this section, the effectiveness of the proposed 
modifications to the standard GA (SGA) [11] is 
evaluated in Experiment I. Then we evaluate the 
proposed algorithm by comparing the workload 
balancing capability, the maxspan after migration 
and the execution time of algorithm with a simple 
deterministic algorithm (DA), the PSO [10], the 
DPSO [19] and the SGA in Experiment II. Maxspan, 
as defined in [12], is the largest task completion 
time among all the processors in the system. Thus, 
in our experiment, the maxspan can be determined 
by finding the largest workload among all fault-free 
cores after migration, which can be calculated 
according to Equation (4). The test cases used 
throughout the two experiments are described in 
Section 5.1. 
 
 
5.1 General experiment setup 
To evaluate the performance of the algorithms, three 
selection probabilities are utilized to construct 
different workload scenarios based on the telecomm 
benchmarks from the Embedded System Synthesis 
Benchmarks Suite (E3S) [25], so that the tasks in 
the system can follow a desired distribution. These 
scenarios are considered as the initial condition of 
the system before cores fail. The processor core, in 
this experiment, is assumed to be the IBM PowerPC 
750CX-500MHz. Hence, the required execution 
time of each benchmark task can be calculated 
accordingly.  

The selection probabilities used are the uniform 
distribution, normal distribution and inverse normal 
distribution. Specifically, the uniform distribution 
evenly selects a desired number of tasks from the 16 
benchmark tasks according to the required execution 
time. The normal distribution generates a set of 
tasks with more of the medium tasks and less of the 
heavy and light tasks. While the inverse normal 
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distribution selects less of the medium tasks and 
more of the other tasks. 

For the first experiment, an 8×8 2D mesh NoC-
based manycore system is targeted. With the above 
selection probabilities, 18 cases are generated where 
20 and 40 tasks are selected respectively for each 
core. For each scenario, 10%, 40% and 80% of 
cores in the manycore system are chosen randomly 
to be faulty to simulate different faulty conditions of 
the system. For clarity, these faulty cases are 
categorized into six workload distribution cases, as 
shown in Table 1.  

Table 1 Workload distribution cases 
Number 
of tasks 

Uniform 
distribution 

Normal 
distribution 

Inverse 
normal 

distribution
20 Workload I Workload II Workload III
40 Workload IV Workload V Workload VI

All the algorithms are implemented using 
MATLAB 7.11 and tested on a computer with 
Pentium Dual-Core CPU E5200 operating at 
2.5GHz, 3GB memory and Windows XP operating 
system. 
 
 
5.2 Experiment I 
To evaluate the optimization performance of the 
proposed modifications to the SGA, in this 
experiment, 2000 iterations (Gmax =2000) for both 
SGA and ACAD-GM are performed, and the two 
algorithms run till Gmax iterations before exit. A 
population size of 20 for both algorithms is used. 
Other parameters for SGA are selected as follows: 
generation gap is 0.95, crossover rate is 0.9, and 
mutation rate is 0.01. Final results for each case are 
averaged over 50 independent trials and shown in 
Table 2. 

 
Table 2 Comparison between SGA and ACAD-GM on 18 test cases 

Workload 
cases 

Faulty 
percentage 

Fitness value Standard deviation Execution time 

SGA ACAD-
GM Improv. SGA ACAD-

GM Improv. SGA ACAD-
GM Degrad.

I 
10% 5.57E+06 5.57E+06 0.04% 4.48E+04 3.90E+04 13.1% 3.79E+00 6.38E+00 68.4%
40% 2.06E+05 1.10E+05 46.4% 4.93E+04 2.80E+04 43.2% 8.04E+00 1.26E+01 56.5%
80% 1.26E+05 5.44E+04 56.7% 3.25E+04 1.95E+04 40.0% 1.21E+01 1.92E+01 59.1%

II 
10% 4.82E+05 4.80E+05 0.6% 2.05E+04 2.24E+04 -8.9% 3.67E+00 6.27E+00 70.9%
40% 1.15E+05 7.48E+04 35.1% 2.20E+04 1.59E+04 27.8% 7.96E+00 1.26E+01 58.1%
80% 6.70E+04 3.32E+04 50.4% 1.74E+04 1.15E+04 33.7% 1.23E+01 1.92E+01 56.5%

III 
10% 3.98E+06 3.97E+06 0.24% 5.24E+04 5.36E+04 -2.3% 3.82E+00 6.36E+00 66.2%
40% 2.64E+05 1.18E+05 55.4% 5.56E+04 3.63E+04 34.7% 8.06E+00 1.28E+01 59.2%
80% 1.48E+05 6.10E+04 58.8% 4.63E+04 2.21E+04 52.3% 1.23E+01 2.32E+01 89.6%

IV 
10% 1.57E+06 1.56E+06 0.76% 4.80E+04 4.18E+04 12.8% 5.00E+00 8.35E+00 66.9%
40% 6.83E+05 4.07E+05 40.4% 1.15E+05 7.27E+04 36.9% 1.23E+01 1.96E+01 59.8%
80% 3.62E+05 1.54E+05 57.5% 8.07E+04 6.29E+04 22.1% 2.25E+01 3.49E+01 55.2%

V 
10% 4.68E+05 4.45E+05 4.8% 2.85E+04 3.31E+04 -16.0% 4.79E+00 8.43E+00 76.2%
40% 6.48E+05 3.84E+05 40.8% 1.03E+05 7.04E+04 31.5% 1.24E+01 1.98E+01 59.6%
80% 2.91E+05 1.22E+05 58.2% 7.45E+04 3.79E+04 49.1% 2.22E+01 3.51E+01 57.7%

VI 
10% 9.67E+06 9.63E+06 0.38% 4.82E+04 3.47E+04 28.1% 4.98E+00 8.40E+00 68.6%
40% 8.23E+05 4.54E+05 44.8% 1.51E+05 8.26E+04 45.4% 1.24E+01 1.99E+01 60.3%
80% 4.24E+05 1.76E+05 58.4% 1.27E+05 7.07E+04 44.6% 2.18E+01 3.44E+01 57.7%

Note: the minus sign “-” means degradation 
 

It can be seen from the results illustrated in Table 
2 that ACAD-GM achieves better fitness values 
than SGA in all 18 cases and has lower standard 
deviations than SGA in most cases. When the 
number of faulty cores increases in the system, the 
advantage of ACAD-GM in finding better solutions 
becomes clearer regardless of the workload 
distribution. The average improvements on the 
fitness value and the standard deviation are 33.9% 
and 27.1%, respectively. Therefore, the proposed 
schemes are efficient in aiding SGA to find better 
solutions. These improvements, however, are at the 

cost of averagely 63.7% more execution time of the 
SGA. This overhead seems to be very large. We will 
show, however, in the second experiment that the 
time overhead depends actually on the iterations the 
algorithm takes. 

To further study the effect of the proposed AC 
and AD schemes on the optimization behavior, the 
evolution process in searching for the optimal 
solution is compared. Since the improvements of 
ACAD-GM on the 10% faults and the 80% faults 
are two extreme cases for each workload 
distribution, where evolution curves of the two 
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algorithms tend to be overlapped and separate for 
the 10% faults and 80% faults cases, respectively, 
the six distribution cases with medium faulty 
percentage (i.e., 40%) are illustrated as follows. 
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Fig.4 Evolution process comparison under 

Workload I 
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Fig.5 Evolution process comparison under 

Workload II 
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Fig.6 Evolution process comparison under 

Workload III 
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Fig.7 Evolution process comparison under 

Workload IV 
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Fig.8 Evolution process comparison under 

Workload V 
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Fig.9 Evolution process comparison under 

Workload VI 
 

As seen from Fig.4 to Fig.9, although the 
advantages of ACAD-GM over SGA are not clear 
for the first 250 generations under Workload II and 
Workload IV as demonstrated in Fig.5 and Fig.7, 
ACAD-GM converges generally faster than SGA 

WSEAS TRANSACTIONS on COMPUTERS Jinxiang Wang, Zixu Wu, Fangfa Fu

E-ISSN: 2224-2872 493 Volume 14, 2015



 

 

for all six workload distributions. This verifies the 
effectiveness of the proposed AC and AD schemes. 
As for the least improvement case on the fitness 
value listed in Table 2, ACAD-GM only reduces the 
fitness value by 0.04% compared with the SGA. The 
comparison of evolution curves for this case is 
illustrated in Fig.10 for the sake of completeness. It 
can be observed that the advantage of ACAD-GM is 
clear for the first 250 generations. And although it is 
hard for both algorithms to find better solutions after 
about 1200 generations due to limited task mapping 
choices, ACAD-GM still produces solutions with 
lower fitness values. Thus, this also justifies the 
effectiveness of the AC and AD schemes. 
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Fig.10 Evolution process comparison under 

Workload I with 10% faults 
 
 
5.3 Experiment II 
In this experiment, the ACAD-GM algorithm is 
compared with the DA, the PSO, the DPSO and the 
SGA algorithms in terms of workload balancing 
capability, execution time and maxspan. Before 
presenting the setup for this experiment and the 
details of the results, the main search process of DA 
is briefly described in Section 5.3.1 for clarity. 
 
 
5.3.1 A baseline algorithm 
The idea of presenting the DA here is to provide a 
baseline for the comparison, since the solutions DA 
generated does not vary with different trials.  

As illustrated in Fig.11, DA generates solutions 
by repeatedly sorting fault-free cores by the 
workload on them and adding the heaviest 
remaining task to the lightest fault-free core after the 
sort. Although this would not guarantee a solution 
with the lowest objective function value (i.e., the 
value of Equation (5)) to be found, it provides a 
better baseline algorithm than a random assignment 
policy. 

 
Fig.11 Pseudo code of DA 

 
 

5.3.2 Setup for experiment II 
In this experiment, totally 30 types of workload 
scenarios are generated, where 20 and 40 tasks are 
selected respectively for each core with different 
network sizes varying from 4×4 to 12×12. For each 
scenario, 10%, 20%, 40%, 60% and 80% of cores in 
the manycore system are chosen to be faulty 
randomly. Consequently, there are totally 150 faulty 
cases for each algorithm. To present the results 
clearly, these test cases are also categorized into six 
groups according to the workload distribution, as 
shown in Table 1.  

 
Table 3 Parameters for algorithms 

Algorithm Parameters 
PSO c1=c2=1.7, W=0.6, Vmax=Xmax/2, 

PopSize=20, Gmax=200 
DPSO c1=c2=2.0, Vmax=40, 

PopSize=20, Gmax=200 
SGA generation gap ggap=0.95, 

crossover rate pc=0.9, mutation 
rate pm=0.01, PopSize=20, 

Gmax=200 
ACAD-GM generation gap ggap=0.95, 

PopSize=20, Gmax=200 
 

The parameter settings of the algorithms are 
listed in Table 3, where DA is not included as it 
does not require any parameter. The parameters of 
PSO are chosen as recommended in [26], as it is 
reported to have higher convergence rate than the 
typical parameter set recommended by [27]. The 
maximum range that a particle can fly (i.e., Xmax), 
however, is limited to the total number of elements 
in core set C, and the maximum velocity Vmax is 
limited to Xmax/2, which is different from the usage 
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presented in [26]. The reason for putting these 
limitations to Xmax and Vmax is that assigning tasks to 
cores outside of core set C is meaningless in our 
experiment. For each stochastic algorithm, the 
population size (PopSize) and the maximum 
iteration number (Gmax) are set to 20 and 200, 
respectively. And all four stochastic algorithms run 
till Gmax iterations before exit. Their final results are 
averaged over 100 trials. 
 
 
5.3.3 Comparison of workload balancing 
capability and execution time  
In this section, workload balancing capabilities of 
the algorithms are compared by considering 
Equation (5) as the objective function. Therefore, 
the algorithm that generates the lowest function 
value is preferred. The value of the objective 
function is referred to as the fitness value in this 
experiment, and the results are normalized to DA. 
Since it is not proper to display all the 150 results 
for each algorithm due to the length of the paper, 
only 10%, 40% and 80% of faults (i.e., totally 90 
cases) for each algorithm are chosen to be illustrated 
from Fig.12 to Fig.17.  

The corresponding 90 execution time results for 
each algorithm are listed in Table 4. The complete 
750 results of the fitness value and 750 results of the 
execution time are used for calculation only. Table 5 
is a scoreboard summarized from the complete 
results of the execution time. It shows the number of 
times that an algorithm obtains a certain rank when 
sorted by execution time, among all the 150 results 
of the algorithm. 
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Fig.12 Workload balancing capability comparison 

under Workload I 
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Fig.13 Workload balancing capability comparison 

under Workload II 
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Fig.14 Workload balancing capability comparison 
under Workload III 
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Fig.15 Workload balancing capability comparison 

under Workload IV 
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Fig.16 Workload balancing capability comparison 

under Workload V 
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Fig.17 Workload balancing capability comparison 

under Workload VI 
 

Table 4 Execution time of algorithms corresponding to the 90 workload cases shown from Fig.12 to Fig.17 
Workload 

cases 
Network 

size 
Faulty 

percentage 
Execution time for each algorithm (s) 

DA PSO DPSO SGA ACAD-GM

I 

4×4 
10% 2.19E-03 2.15E-01 9.43E-01 2.80E-01 3.02E-01 
40% 6.29E-03 2.79E-01 2.47E+00 3.64E-01 4.01E-01 
80% 1.36E-02 4.13E-01 4.86E+00 5.02E-01 5.52E-01 

6×6 
10% 4.45E-03 2.46E-01 1.89E+00 3.25E-01 3.48E-01 
40% 1.52E-02 4.12E-01 5.93E+00 5.39E-01 5.81E-01 
80% 3.09E-02 5.99E-01 1.11E+01 8.20E-01 8.51E-01 

8×8 
10% 7.07E-03 2.81E-01 2.98E+00 3.66E-01 3.91E-01 
40% 3.04E-02 7.18E-01 1.20E+01 7.98E-01 8.31E-01 
80% 5.37E-02 6.02E-01 2.02E+01 1.22E+00 1.28E+00 

10×10 
10% 1.23E-02 3.84E-01 5.19E+00 4.53E-01 4.88E-01 
40% 4.65E-02 1.04E+00 1.90E+01 1.02E+00 1.07E+00 
80% 8.55E-02 1.48E+00 3.31E+01 1.79E+00 1.93E+00 

12×12 
10% 1.78E-02 4.29E-01 8.15E+00 5.46E-01 5.77E-01 
40% 7.08E-02 1.19E+00 2.89E+01 1.37E+00 1.46E+00 
80% 1.24E-01 1.98E+00 4.93E+01 2.65E+00 2.64E+00 

II 

4×4 
10% 2.20E-03 2.15E-01 9.38E-01 2.78E-01 3.00E-01 
40% 6.35E-03 2.79E-01 2.48E+00 3.65E-01 3.91E-01 
80% 2.77E-02 4.32E-01 4.86E+00 4.99E-01 5.47E-01 

6×6 
10% 4.45E-03 2.46E-01 1.89E+00 3.25E-01 3.48E-01 
40% 1.51E-02 4.17E-01 5.94E+00 5.39E-01 5.84E-01 
80% 3.02E-02 6.26E-01 1.11E+01 8.25E-01 8.59E-01 

8×8 
10% 7.09E-03 2.80E-01 2.96E+00 3.66E-01 4.02E-01 
40% 2.88E-02 6.80E-01 1.19E+01 7.76E-01 8.30E-01 
80% 5.44E-02 6.38E-01 2.02E+01 1.22E+00 1.29E+00 

10×10 
10% 1.25E-02 4.14E-01 5.17E+00 4.56E-01 4.91E-01 
40% 4.66E-02 1.01E+00 1.91E+01 1.02E+00 1.07E+00 
80% 8.62E-02 1.30E+00 3.28E+01 1.84E+00 1.92E+00 

12×12 
10% 1.87E-02 4.47E-01 8.07E+00 5.46E-01 5.87E-01 
40% 7.02E-02 1.19E+00 2.87E+01 1.39E+00 1.45E+00 
80% 1.24E-01 2.18E+00 4.89E+01 2.50E+00 2.86E+00 

III 
4×4 

10% 2.28E-03 2.20E-01 9.43E-01 2.83E-01 3.11E-01 
40% 6.59E-03 2.85E-01 2.47E+00 3.62E-01 3.90E-01 
80% 1.34E-02 4.28E-01 4.82E+00 5.22E-01 5.37E-01 

6×6 
10% 4.44E-03 2.50E-01 1.90E+00 3.25E-01 3.49E-01 
40% 1.51E-02 4.53E-01 5.93E+00 5.16E-01 5.79E-01 
80% 3.04E-02 6.01E-01 1.12E+01 8.09E-01 8.69E-01 
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Table 4 (Continued) 
Workload 

cases 
Network 

size 
Faulty 

percentage 
Execution time for each algorithm (s) 

DA PSO DPSO SGA ACAD-GM

III 

8×8 
10% 7.25E-03 2.85E-01 2.97E+00 3.65E-01 4.06E-01 
40% 2.89E-02 6.92E-01 1.20E+01 8.00E-01 8.25E-01 
80% 5.35E-02 5.90E-01 2.04E+01 1.22E+00 1.28E+00 

10×10 
10% 1.22E-02 3.50E-01 5.19E+00 4.56E-01 4.85E-01 
40% 4.67E-02 9.21E-01 1.92E+01 1.02E+00 1.07E+00 
80% 8.48E-02 1.44E+00 3.31E+01 1.83E+00 1.89E+00 

12×12 
10% 1.79E-02 4.47E-01 8.10E+00 5.46E-01 5.74E-01 
40% 7.14E-02 1.19E+00 2.88E+01 1.39E+00 1.47E+00 
80% 1.25E-01 2.14E+00 4.94E+01 2.50E+00 2.86E+00 

IV 

4×4 
10% 4.40E-03 2.47E-01 1.73E+00 3.24E-01 3.50E-01 
40% 1.26E-02 3.72E-01 4.75E+00 4.78E-01 5.15E-01 
80% 2.68E-02 4.16E-01 9.50E+00 8.05E-01 8.27E-01 

6×6 
10% 8.88E-03 3.13E-01 3.66E+00 3.95E-01 4.29E-01 
40% 2.98E-02 5.83E-01 1.18E+01 8.10E-01 8.44E-01 
80% 6.05E-02 8.97E-01 2.21E+01 1.38E+00 1.45E+00 

8×8 
10% 1.42E-02 3.77E-01 5.92E+00 4.96E-01 5.36E-01 
40% 5.78E-02 1.07E+00 2.37E+01 1.23E+00 1.34E+00 
80% 1.08E-01 1.16E+00 4.05E+01 2.20E+00 2.35E+00 

10×10 
10% 2.46E-02 5.04E-01 1.02E+01 6.58E-01 7.16E-01 
40% 9.47E-02 1.64E+00 3.81E+01 1.78E+00 1.91E+00 
80% 1.71E-01 2.16E+00 6.62E+01 4.06E+00 4.09E+00 

12×12 
10% 3.61E-02 6.36E-01 1.60E+01 8.45E-01 8.47E-01 
40% 1.40E-01 2.47E+00 5.81E+01 2.63E+00 2.85E+00 
80% 2.47E-01 6.33E+00 1.00E+02 6.42E+00 6.47E+00 

V 

4×4 
10% 4.29E-03 2.47E-01 1.73E+00 3.24E-01 3.49E-01 
40% 1.29E-02 3.60E-01 4.76E+00 4.79E-01 5.31E-01 
80% 2.70E-02 3.75E-01 9.54E+00 8.03E-01 8.23E-01 

6×6 
10% 8.83E-03 3.13E-01 3.65E+00 3.94E-01 4.31E-01 
40% 3.01E-02 5.50E-01 1.17E+01 7.84E-01 8.21E-01 
80% 6.02E-02 9.38E-01 2.20E+01 1.37E+00 1.43E+00 

8×8 
10% 1.42E-02 3.74E-01 5.82E+00 4.92E-01 5.23E-01 
40% 5.78E-02 9.96E-01 2.35E+01 1.27E+00 1.32E+00 
80% 1.07E-01 1.17E+00 4.06E+01 2.24E+00 2.35E+00 

10×10 
10% 2.47E-02 5.03E-01 1.02E+01 6.75E-01 6.98E-01 
40% 9.26E-02 1.59E+00 3.81E+01 1.78E+00 1.90E+00 
80% 1.70E-01 2.14E+00 6.61E+01 3.58E+00 4.08E+00 

12×12 
10% 3.69E-02 6.37E-01 1.61E+01 8.16E-01 8.34E-01 
40% 1.41E-01 2.50E+00 5.80E+01 2.55E+00 2.69E+00 
80% 2.47E-01 6.54E+00 9.98E+01 6.33E+00 6.45E+00 

VI 

4×4 
10% 4.27E-03 2.47E-01 1.73E+00 3.24E-01 3.51E-01 
40% 1.27E-02 4.39E-01 4.79E+00 4.98E-01 5.22E-01 
80% 2.69E-02 5.85E-01 9.56E+00 8.08E-01 8.45E-01 

6×6 
10% 8.93E-03 3.35E-01 3.68E+00 4.10E-01 4.31E-01 
40% 2.98E-02 5.69E-01 1.18E+01 7.96E-01 8.33E-01 
80% 6.14E-02 9.60E-01 2.22E+01 1.37E+00 1.45E+00 

8×8 
10% 1.42E-02 4.08E-01 5.91E+00 4.95E-01 5.37E-01 
40% 5.77E-02 1.04E+00 2.38E+01 1.26E+00 1.33E+00 
80% 1.08E-01 1.39E+00 4.05E+01 2.29E+00 2.35E+00 

10×10 
10% 2.44E-02 5.96E-01 1.02E+01 6.66E-01 7.05E-01 
40% 9.30E-02 1.85E+00 3.82E+01 1.79E+00 1.89E+00 
80% 1.70E-01 2.25E+00 6.62E+01 3.56E+00 3.75E+00 

12×12 
10% 3.58E-02 6.37E-01 1.60E+01 7.83E-01 8.22E-01 
40% 1.43E-01 2.49E+00 5.82E+01 2.58E+00 2.70E+00 
80% 2.49E-01 6.27E+00 9.96E+01 6.17E+00 6.38E+00 
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Table 5 Algorithm ranking based on execution time 

Algorithm Rank (rank 1 is the fastest) 
1 2 3 4 5 

DA 150 0 0 0 0 
PSO 0 142 6 2 0 

DPSO 0 0 0 0 150
SGA 0 8 140 2 0 

ACAD-GM 0 0 4 146 0 
 

Generally, it can be seen from Fig.12 to Fig.17 
that, for all test cases, PSO and DPSO could not 
guarantee better workload balancing capabilities 
than DA, and PSO cannot generate better solutions 
than DPSO. When the number of tasks executed on 
a single core increases from 20 to 40, PSO has 
higher probability to be trapped in the local optima, 
resulting in more unbalanced workload distribution, 
while the results of DPSO does not vary largely. For 
example, in a 16-core system with 13 faulty cores 
(i.e., the case of 80% fault and 4×4 network size), 
PSO handles well for Workload I and Workload III 
but not for other workload distributions. Especially 
for Workload VI, it generates solutions with the 
fitness value almost 166 times larger than DA. 
While for DPSO, the fitness value it achieved in the 
worst case is only about two times the value for DA. 
DPSO produces smaller fitness values as the 
number of faulty cores increases for a given network 
size. On the other hand, as shown in Table 4 and 
Table 5, PSO requires the second shortest execution 
time in most cases (142 cases to be exact), while 
DPSO has the longest execution time in all cases.  

Therefore, it can be concluded from the above 
results that although PSO operates fast and could 
generate good solutions in some cases, it is 
generally not as effective as DPSO in solving 
discrete problems. Meanwhile, although DPSO 
outperforms DA in generating solutions with lower 
fitness values in most cases, it requires the longest 
execution time. 

As for SGA and ACAD-GM, it can be observed 
that both the algorithms produce solutions better 
than DA in all cases and their execution time are in 
the same order of magnitude as PSO, which are 
generally one or two orders of magnitude lower than 
DPSO. The figures also shows that for a given 
network size, SGA and ACAD-GM produce more 
balanced workload distribution as the number of 
faulty cores increases, which is similar to the 
behavior of DPSO. The main reason for this 
phenomenon is that when more cores fail, more 
combinations can be tried to find an optimal 
solution. Meanwhile, more execution time is 
required (as shown in Table 4). 

A more detailed comparison between ACAD-
GM and other algorithms has been performed based 
on the exact 750 fitness values (not included here 
due to the length of the paper). And we found that, 
in all 150 faulty cases, ACAD-GM achieves on 
average 86%, 88%, 37% and 16% improvements on 
the fitness value (i.e., lower fitness value) compared 
with DA, PSO, DPSO and SGA, respectively. A 
detailed comparison based on the complete 750 
results of the execution time shows that ACAD-GM 
requires on average 35%, 36.3% and 6.2% more 
execution time than DA, PSO and SGA, 
respectively, while reduces 90.9% execution time 
compared with DPSO. 

 
 

5.3.4 Comparison of maxspan 
The results illustrated from Fig.18 to Fig.23 are 

the maxspans generated by each algorithm under six 
workload distribution cases. 
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Fig.18 Maxspan comparison under Workload I 
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Fig.19 Maxspan comparison under Workload II 
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Fig.20 Maxspan comparison under Workload III 
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Fig.21 Maxspan comparison under Workload IV 
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Fig.22 Maxspan comparison under Workload V 

 
It can be discovered generally from Fig.18 to 

Fig.23 that DPSO, SGA and ACAD-GM produce 
smaller maxspans than DA and PSO in most cases. 
And the worst maxspan of PSO is only 10% larger 
than that of DA, as shown in Fig.19. Comparing 

with the results from Fig.12 to Fig.17, it can be 
observed that a more balanced workload distribution 
does not necessarily guarantee a smaller maxspan. 
This is because the maxspan only depends on the 
maximum workload in the system. And if the 
workload on one core is much larger than any of the 
workloads on other cores before migration, the 
algorithms would map more tasks onto the light-
loaded cores first due to the restriction of Equation 
(5). Thus if the workload on any of the other cores 
does not exceed the workload on the originally 
heaviest-loaded core, then the maxspan after 
migration remains the same. A detailed analysis 
based on the complete 750 results of the maxspan 
shows that ACAD-GM achieves on average 8.67%, 
5.13%, 0.98% and 0.14% improvements on the 
maxspan compared with DA, PSO, DPSO and SGA, 
respectively.  

 
Table 6 Improvements of ACAD-GM summarized 

from Experiment II 

Aspect Algorithms being compared 
DA PSO DPSO SGA

Fitness value 86% 88% 37% 16% 
Execution 

time -35% -36.3% 90.9% -6.2%

Maxspan 8.67% 5.13% 0.98% 0.14%
Note: the minus sign “-” means degradation 

 
For clarity, the improvements of the proposed 

ACAD-GM algorithm on fitness value, execution 
time and maxspan compared with the other four 
algorithms are summarized in Table 6. Together 
with the above analysis, it can be seen from Table 6 
that although ACAD-GM has little advantage in 
shortening the maxspan, it can provide the best-
balanced workload distribution after task migration, 
which is important to the lifetime of the whole 
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manycore system. Moreover, the added schemes in 
ACAD-GM improve the workload balancing 
capability of SGA by 16% while only adds 6.2% of 
the execution time. Since the extra computations 
introduced by the AC and AD schemes in each 
generation are constant for a given faulty case, this 
time overhead varies almost linearly as the 
maximum generation changes from 2000 to 200, 
resulting in approximately 9 times smaller than the 
ratio 63.7% shown in Experiment I. 
 
 
6 Conclusion 
In this paper, a genetic task migration algorithm, 
namely ACAD-GM, is proposed towards workload 
balancing for fault recovery in NoC-based manycore 
systems. It incorporates an adaptive crossover 
scheme and a chaotic disturbance scheme with the 
standard genetic algorithm to improve the searching 
efficiency in solving the task migration problem. 
Experiments verify the effectiveness of the proposed 
schemes and shows that the ACAD-GM has better 
workload balancing capability compared with four 
relevant algorithms. The time overhead caused by 
the AC and the AD schemes varies almost linearly 
with the number of search iterations.  
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